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Summary of Phase I Research

Interaction of the control system with the structural dynamics of
the physical system is onme of the fundamental issues in large space
structure applications. Our work is intended to contribute directly
to understanding this interaction by using models which capture the
essential distributed character of the system, and wusing analytical
techniques vwhich preserve the character of the physical system in the
model simplification process. The methods we have used --
Wiener-Hopf/spectral factorization methods for design of distributed
control systems and homogenization/asymptotic analysis for model
simplification -~ have tremendous potential for the analytical
treatment of complex structural control problems, including the
sysnthesis of computer-aided-design methods for large space
structures. In Phase I of this project, we have concentrated on the
treatment of a few simple prototype systems. Further work is needed
to adapt and enhance the methods to treat complex structures. The
analytical methods themselves do not require substantial extensions.
Rather, their potential for the treatment of complex flexible
structures should be developed.

The main emphasis in the first phase of this work has been the
adaptation and enhancement of certain Wiener-Hopf methods for control
system design used by J. Davis for the treatment of linear, dynamic,
distributed parameter models of flexible structures. Davis developed
a frequency domain methodology for computing optimal (regulator)
feedback gains for linear distributed parameter control systems by
Wiener-Hopf spectral factorization. The numerical algorithms for
executing the spectral factorization were based on some earlier work
of F. Stenger. We have adapted the Davis-Stenger methodology to the
problem of vibration control of flexible structures. A generic
problem of this type is the figure control of a large space antenna.
We have carried out the analysis and computed the optimal feedback
regulator control 1laws for several examples including - the
Euler-Bernoulli beam model and a  two-dimensional prototype
(experimental) system studied by J. Lang and D. Staelin.

This portion of the research has demonstrated the effectiveness
of frequency domain -- spectral factorization methods for the design
of control and state estimation algorithms for flexible structures
described by linear distributed parameter models (hyperbolic partial
differential equations). In this approach it is not necessary to
reduce the models to finite dimensional (lumped parameter) models at
the outset of the design procedure. The infinite dimensional
character of the system is preserved throughout the design process.
The spectral factorization methodology avoids the difficult numerical
problems associated with the solution of the Riccati partial
differential equations which arise in the time domain approach for
designing stabilizing controllers. In thia way distributed phenomena,
like travelling waves, which characterize the macroscopic dynamics of
flexible structures are retained in the model, and their interaction
with the control system is preserved in the analytical design process.
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In the second part of the research we have examined the use of a
mathematical technique for asymptotic analysis called
"homogenization”, originally developed by I. Babuska, to produce
simplified models for flexible structures with a regular (periodic)
infrastructure. Homogenization of the model for a atructure with a
regular infrastructure produces a model with smoothly varying
"effective" parameters for mass density, local tension, and damping
that represents a flexible structure with a uniform "homogenized”
internal structure. The derivation of continuum models for complex
structures with a regular infrastructure has been studied for many
years in applied mechanics. In most cases the continuum models are
based on local averages of the physical parameters (e.g., mass
density, stress, strain, etc.) over some characteristic volume of the
structure. The averaged quantities computed in this way are related
to the associated quantities in a postulated continuum structure. For
example, the mass density and stress tensors in a long truss with a
regular lattice structure have been related to the distributed

parameters in a beam (in the work of Noor, Nayfeh, and Renton, among
others).

Our technique does not require the a priori assumption of a
specific continuum structure as the approximation for a given lattice
structure. Instead, the asymptotic analysis of the original structure
produces the distributed continuum ~pproximation model of the lattice
structure in the 1limit as  some characteristic parameter (e.g.,
inter-cell dimension) in the structural model goes to zero. Moreover,
the natural averaging process is developed in the course of the
analysis. It is easy to construct examples in which the usual
procedure of averaging parameters over a characteristic volume 1leads
to incorrect approximations for the system dynamics. The
homogenization methods used in our research are based on the
assumption of a periodic infrastructure in the original model. This
is not necessary, and random structures can also be treated, if the
randomness has sufficient ergodicity properties (in the spatial
variables). Numerical evaluations of the averaged model are more
difficult in this case.

Homogenization and asymptotic analysis can also be carried out in
the context of control and state estimation problems for heterogeneous
structures. 1If is important that the control and homogenization
procedure not be done separately, since one can construct examples in
which control designs based on averaged models are not correct as
approximations to the optimal (e.g., regulator) control laws for the
original problem. While «control and filtering theory with
homogenization is not very advanced at this stage, it is nevertheless
possible to analyze some prototype problems to a point where the basic
features of the theory are clear. Our work has contributed to this
process, but much more needs to be done.
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1. Background: Dynamical Control of Flexible Structures

Interaction of the control system with the structural dynamics of
the mechanical system is one of the fundamental issues in large space
structure applications. OQur work is intended to contribute directly
to understanding this interaction by using models which capture the
essential distributed character of the system, and using analytical
techniques which preserve the character of the physical system in the
model simplification process. The methods we have wused --
Wiener-Hopf/spectral factorization methods for design of distributed
control systems and homogenization/asymptotic analysis for model
simplification ~- have tremendous potential for the analytical
‘ treatment of complex structural control problems, including the

synthesis of computer-aided-design methods for large space structures.
* In Phase I of this project, we have concentrated on the treatment of a
few simple prototype systems. The methods may be adapted to treat

' complex structures. They do not require substantial extensions for

such cases. Rather, computational algorithms which translate their

strengths into effective design tools need to be developed.

The main emphasis in the first part of this work has been the
adaptation and enhancement of certain Wiener-Hopf methods for control
system design used by J. Davis for the treatment of linear, dynanmic,
distributed parameter models of flexible structures (Davis 1978,
1979a,b 1982) (Davis and Barry 1977) (Davis and Dickemson 1983).
Davis and his colleagues developed a frequency domain methodology for
computing optimal (regulator) feedback gains for linear distributed

parameter control systems by Wiener-Hopf spectral factorization. The
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‘ numerical algorithms for executing the spectral factorization were
" based on some earlier work of F. Stenger (1972). We have adapted the \
:: Davis-Stenger methodology to the problem of vibration control of '
c flexible structures. A generic problem of this type is the figure ':"
control of a large space antenna. We have carried out the analysis
and computed the optimal feedback regulator control laws for several
examples including the Euler-beam and a two-dimensional prototype :“
(experimental) system studied by J. Lang and D. Staelin (Lang and .';"--‘
B Staelin 1982a,b).
" =
This portion of the research has demonstrated the effectiveness "‘
of frequency domain -~ spectral factorization methods for the design
f - of control and state estimation algorithms for flexible structures '_
F ‘ described by linear distributed parameter models (hyperbolic partial ""'
” jé:: differential equations). In this approach it is not necessary to
:'.'-: reduce the models to finite dimensional (lumped parameter) models at '“
- L—- the outset of the design procedure. The infinite dimensional ""
E. P character of the system is preserved throughout. The spectral
,_ .:: factorization methodology avoids the difficult numerical problems .~
P‘ o associated with the solution of the Riccati partial differential =
:_ equations which arise in the time domain approach for designing
E _‘- stabilizing controllers. In this way distributed phenomena, like *
travelling waves, which characterize the macroscopic dynamics of ~
'_ e flexible structures are retained in the model, and their interaction \
P L with the control system is preserved in the analytical design process. %
7 :
. 2 :
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i 1.1 Generic Models of the Dynamics of Flexible Structures
: x The flexible structures treated in this work are assumed to be
| 5 continua described generically by the system of partial differential
* it equations X
3
- (1) m(x)h, (€,x) + Dyh (t,x) + Ajh(t,x) = F(t,x)
where h(t,x) is an n-vector of instantaneous displacements away from
its equilibrium of the structure S, a bounded open set in R™ with
b smooth boundary S. The mass density m(x) is positive and bounded on
:. :::: S. 'The damping term Doh . contain both (asymmetric) gyroscopic and
:::, - (asymmetric) structural damping effects. The internmal restoring force
~' E term Ach is generated by a time-invariant differential operator Ao
specific to the flexible structure. For most cases of interest, Ay
'-E: may be taken to be an unbounded operator with domain D(A,) containing
. c smooth functions with the appropriate boundary conditions which is
} - dense in the Hilbert space Ho = LZ(S) with the natural inner product,
E :::: <{*y,>. In many cases Ao has a discrete spectrum with associated
. c, eigenfunctions which constitute a basis for I.2 (s).
The applied force distribution F(t,x) generally has three _
- m components _;i
T (2)  F(t,x) = P (t,x) + F (t,x) + F (t,x) :
.2-'
,\' A

where 1:1 (t,x) is a vector of exogeneous disturbance forces and

+
o
-

25

. torques, F c(t,x) is a continuous, distributed, controlled force field 3
e <9
E - (a8 in an electrostatically controlled system); and F,(t,x) AR
= =
2 RO
e c 3 [ s
‘-: "~ “.:"'q
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1 . represents the control forces due to discrete actuators

:\‘ .

: i F_(t,x) = % ‘b,(x)u .(t) 4 B.u(t)

o (3) a't’ j%1 73 3 0

Ei e The actuator amplitudes are u (t) and the actuator influence functions

»

’ o bi(x) are typically elements of Hy (which usually, but not always,

approximate delta functions 6 (x-x a)). Observations are usually

- assumed to arise from a finite number p of sensors

- (4) yi(t) = <cj'h>0 + <Ej'ht>0 j=1,...,p
or
| ' A n -

SI (4')  y(&) = Coh + Cohy s y(e) = My (e),..,y (6) &
A where the position and velocity influence functiona cﬁ, cj, :;5
- ij J=1,e0s,p are elements of H which may represent point devices. [::
i Note that B:R" +H , G :R¥ +H , and Gy:R » H are bounded. %
e Cin)
S - ::-E::.
. The control problem for (1)-(4) is to choose the discrete control Eii
- F? amplitudes uj(t), j=1l,0ee,m, and the distributed control forces ;f
2 .. F_(t,x), based on the observations y,(t), 1 = 1,...,p to maintain the .
.:". -y .:"(
;; state ;;u
— =
AT h(t,x) ey
:.- (5) v(t) = -‘."
[ Pe (€ %) o
=y , =
- as close to its equilibrium position (nominally zero) as possible. If T
f ot the disturbances are transient, this may be accomplished by using a

regulator control law which minimigzes the quadratic performance index
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(6) JTt) = f‘; [qiv,v) + ou’ (®)ule) + QE_, F)lat

vhere q, Q are non-negative quadratic forms, and o is a positive
parameter. This is the generic control problem surveyed in (Balas
1982). It includes boundary and interior control of vibrating

strings, membranes, thin beams, and thin-plates.
1.2 State space models and modal control

Suppose for the moment that Ao is symmetric with compact
resolvent and spectrum bounded from below. The spectrum of AO

consists, therefore, of isolated eigenvalues )k ’

(7 A SA, S ..

and eigenvectors such that A0¢k Y . Assume )‘1 > 0. Then Ao

k¢k
satisfies

(8) <aphw>, 2 ¢e||n]]2,e 0

and A, has a square root Ag . Let D(AO)CLZ(S) be the domain of

Ay and D(A 3 Y= LXS) be that of Ag . Let H=LXsS) x LXS), and

consider
v w
(9) a [] = [ ], veD @), weD(Ag)
w A vV
0
0
(10) B=B C=(C, Cpl
0

so that B:R™ x R™® +H and C:H+ RP. With v(t) defined by (5) we have

(11) d—:-v(t) = Av(t) + Bult), yit) =Cvit), v(O)el-ll
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vhich is the state space deaciiption of the original problem with the

additional assumptions on A.

The energy inner product <+ ,»> defined on H1 is
(12) < ' > = <v1,A°v2>o + <w1,w2>

And so, in the energy norm we have
(13) ||v(t)||E = <h,A°h>o + <h.,h >

which is a mena&re of .the total potential and kinetic energy in
(h’ht)' The operator A on (Hl, <°,'33) generates a unitary group U(t)
(Treves, 1975) and

b

© |cos wt w .- sin Wt (0)
(14) u(t)v, = z B k ** by

k=1 -ty sin Wt cos w t ék(o)
for any
(15) Yo T

Thus, when u(t)= 0 in (11), wenergy is preserved, 1i.e.,
for any v,eH . For any u(t), continuously
differentiable, the solution of (11) is

(16)  v(t) = Ult)vy + f'é U(t-T)Bu(T)dT

In fact,

cetate e
A D)
v fre's H
.
B ] *
AR RS AR AR

18
*

o«

o i

S,
NN

" . l..-':v'.‘:l‘I t "




® a, (t)
(17) w(t) = L [k ] 29

k=1 ik(t)

vith [a (t), & (t)], k = 1,2,..., defined by ordinary differential

equations.

By introducing finite dimensional subspaces l{k- span {¢ ’
k=1,2,...,K} of K, one can conmstruct finite dimensional modal

approximations to the system (11); and from these, finite dimensional

control problems whose solutions may be used to compute suboptimal
control laws for the infinite dimensional control problem defined by

(6)(1t). (See, e.g., Balas 1978, 1982). The feedback controls

obtained in this way will stabilize the first K modes of the
distributed system. However, as noted in (Balas 1978) in all but a
few special systems, the control actions will excite the higher order
modes. This ”spilloéer' effect invariadbly degrades systenm
performance. While this phenomenon has received considerable
attention in the literature, it is the unavoidable companion of design

methods based on lumped parameter models.

In this research we take a different approach to the con;rol
system design which deals directly with the infinite dimensional
system. The method uses a frequency domain formulation of the control
problem, analogous to the setup for finite dimensional problems in
(Willems 1971), and a spectral factorization algorithm to compute the
feedback gain. The formal algorithms are described in sectionm 2.
Before developing the mathematics it is wuseful to look at some
examples and prototype systems which illustrate the basic features of

the control problem.
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o 1.3 Control of a vibrating flexible string

: ! Small vibrations of a flexible string may be described by

W O h = o

- (18) p (z)b,, - Pp(z)h  * q(z)h, + riz)h,

L ‘where p'(z)- > p,> O is the linear mass density, p(z) > po) 0 is the

y = ' _

- f’_.'r modulus of elasticity, and we assume that p, p, q, r are twice

.. continuously differentiable. Suppose that the space ze[0,1] and time

g t have been normalized to dimesionless coordinates. The system can be

‘_: put in a standard form by changing ‘the independent vgria_ble

‘. z

T Cox= (RS

~ -l_- 0 p(S)

. with L = x(1) we have

. htt - hxx + a(x)h + b&x)h =0

-' (19) ¢ x

- 0 = b4 < L , 0 < t

3. The coefficients a(x) and b(x) are continuously differentiable

SN

Q - functions of x. Defining

N

::: " (20) , v = ht(tlx)r w = hx(t,X)

:'_: we have -.::4
| ]
R 3 |v 01 8 | v a(x) b(x)] |v N _‘;.n
(21) - - — + = 0 -
2 ct | w i 0) 9x|w 0 ) w $44
a iy
ERC Al
. The appropriate boundary conditions are by
D Apvit,0) + Byw(t,0) = o0
‘. .
SRR (22) a.v(t,L) + B w(t,L) = u(t) R
Wi 1 1 §
" R
::f 8 \:'.
O s
.- ‘.:‘ - '\-.'.'3
., ,\‘:--3
‘. AN
= C g‘il‘
R =
o T
> S
T e e et e o 5 NS e N Nt i TN T e NN T Tt T R




e %

PR hpag g §
s v
)

-
*

..
.
R |

Pt

N S N N e A a2t a e s av i ) R Y I N SNSRI TS IR IR I TS I T E TR M ) e oo - gl S 5

vith the conditions (,/8) #+1, (a /B]# +1 imposed to avoid
pathologies. Here e°=-'0 corresponds to a fixed endpoint, while

= 0 permits an end to move freely along fhe h axis, and aof o,
Bof O represents an end free to move but with positive or negative

friction. The function u(t) is a boundary control.

One can generalize (21) to

9 v v .
(23) ° _ ~
% H i H =0

with
o 1] 3 a,. (x) a,,(x)
(24) Af - — £ - 11 12 £
1 0] 98x a,,(x) a,, (x)

and the real coefficients aij(x) are continuously differentiable on
0% x$ L. By studying the finite time controllability of (22)-(24)
D.L. Russell (1972) was able to prove some interesting properties of
the eigenvalues and eigenfunctions of A. In particular, if the
(complex) eigenvalues of A are {Ak}, then { ekkfk =1,2 ...} forms a
Riesz basis for the space Lz[O, 2L]. Moreover, there is a unique
control u € 17[0,T] T=2L (recall that all variables are dimensionless)
which takes the solution of (22)-(24) to zero at t=T=2L from arbitrary

initial conditions (in the space )

<

(25) v(0,x) = v,y(x) , w(0,x) = wy(x), O s x L

and

----------
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(26)  kZ vy |? + w0 )%ax Sy

. 2

L
SkfE v ]2+ |u 0| ax

for some positive constanté k, K. The time T = 2L is "critical". 1In
general, it is not possible to make the transfer in T <2L; and for
T » 2L there will, in general, be many controls which accomplish the
transfer. By considering the special spectral structure of the
operator A and its adjoint A*; Russell was able to show that the
unique control u(t), 0 St £2L, accomplishing the trénsfer could be

synthesized by a bounded linear functional of the state in (21).

From this analysis it follows that the optimal regulator problem

for (21), that is, the problem

uey 0

ad

(27) min S5 (w2 @) + UD (vl 2+ wiessl? anlae

subject to (21) (22) with admissible controls consisting of bounded
(linear) feedback functionals of the state has a unique solution which
produces a finite optimal cost. The problem (23)-(25) (27) is the
simplest example of the class of control problems treated in this
work. It is a one dimensional version of the two dimensional

prototype system discussed next.

1.4 Control of a two-dimensional hyperbolic system

In an interesting paper J. Lang and D. Staelin (1982b) studied
the dynamical control properties of a simple experimental system as a

prototype of an antenna design using electrostatic control to maintain

10
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the antenna shape (Lang and Staelin 1982a). The experimental system
consisted of a flexible, conducting wire mesh (about 1 mz) suspended
vertically in tension by rigid rectangular boundaries and biased by a
high voltage source. A parallel surface of equal dimension, spaced a
short distance normal to the mesh, supported a 3 x 3 array of fixed
conducting plates independently addressable through bipolar, variable
low voltage sources which collectively served as a distributed,
electrostatic control. A similar set of plates, equally spaced from
the mesh on the opposite side, served to capacitively sense mesh
deflections. The balancing electrostatic pressures on the mesh
produced a grounded-control equilibrium geometry in which all three

surfaces were parallel.

A regulator control law was designed to modulate the voltages on
the 9 actuator plates.in response to (filtered) observations of the
mesh deflections from the 9 sensor plates. Finite dimensional modal
models representing the dynamica of 1 to 3 modes were used in the
control system design. The basic 1linear - quadratic - Gaussian
regulator control 1law was not satisfactory in certain experimental
regimes (high bias voltage)‘ due to unmodeled physical factors.
Modifications were necessary to achieve mesh stabilization in these

cases. Spillover effects were also observed and compensated.

In (Lang and Staelin 1982b) the mesh was modeled as a flexible
membrane in tension. The transverse mesh deflection h(t,x,y), defined

as positive toward the sensor plates, satisfies

(28) Mh., = T/h o+ Tgh,, - Dh, + f

1"
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Here M is (uniform) mass density, T, TR are (uniform) coefficients of
mesh tension, and D is a viscous damping coefficient. Assuming a long
wave model for the electric field between the mesh and plates, the net
transverse electrostatic pressure, f(t,y,y), acting on the mesh
satisfies

2

2
v _ (V-u)
(@) ¢ = de | @m - @m

where u = u(t,x,y) is the potential of the actuator plates, V is the
mesh bias potential, H is the electromechanical plate-to-mesh

separation, and €, is the permittivity of free space. Assuming
|h|<< H and ju]| <« V

equation (29) was linearized, and the resulting linear control system

studied in (Lang and Staelin 1982b) was

(30) Mh,, = Tahxx + TBhyy - Dht + Kh - Bu(t)

where K = 26 V¥H>and B =€, V/H2 Defining s = [0, 1, ] x [0, I;] as
the location of the mesh, the mesh boundary conditions required zero

deflection at the perimeter.

If we identify Ah as the linear operator on the right in (30),

then the eigenfunctions of A are

¢m (x,y) = sin(mnx/La). sin (nﬂy/LB)

(31)

n

S xS Sy S
0 x La s 0O y LB

and the corresponding eigenvalues are
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These define the “open-loop” mnatural frequencies of the system.

B RN
55

Notice that the (m, n)-mode is unstable if

R S L N 4T . .
. Cvnes
v
A
1 A

L - !
2 1r2H3 mz'ra nzTB 5
(33) v > 5 * 3
. c .
. 2 g L, Lg :
- BT — ¢ re—————— L“:v:
S Therefore, if V is large enough, a finite number of modes are .',é::;'-
. open-loop unstable.
iE !
%: The experimental system in (Lang and Staelin 1982b) has noise in "
both actuator and sensor systems. This noise was represented by ::'.-'_TE
Gaussian white noise. The overall performance index used in the :Lj:'_l
! E design was
5o pS
A -
. 1 1 &+T, Sa MR 2.2 22 =
. C (34) T = 3 lim E{% fkT [fo fo g’ &, x,y) + v (t,x,y) dx dyldat}
oo k e
s’__x'
. SRS
g .\‘:'._
. b Py
\ where r = v'al » with vy the dynamic range on the voltage control Y
-
:— L system, and g = 2 V/Hy,. -
;:3‘§t
- o The atudy of this small system provides a great deal of useful f:l_l:
E =~ information on control problems that can be expected for certain .
oo classes of flexible structures. The control system performance '-f,:::‘.
O SN
'. - '.\
’. reported by Lang and Staelin provides one of the few available '\':
NG
K o -~\_
: L’ benchmarks against which alternative control system designs may be F
, tested. We shall consider this system further in section 4. o
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1.5 Control of a simply supported beam —q

- ¥ "y e e w

The Euler-Bermoulli equation for the dynamics of a simply 2&;

supported beam is =
Mhtt + Dhtxx + EIh = f£(t,x)

(35) 05x%L , 0%¢ -

£-..

h{(t,0) = 0 = h(t,L) .E

h (€00 = 0 = h (t,L) :

e

where M is the mass density (per unit length), D is a damping ratio, E -

.»,-_1

is the modulus of elasticity, I is a moment of inertia, and f is an T

applied force distribution.

If we ignore the damping, D = O, and normalize other parameters
to unity, then the mode shapes - eigenfunctions are Ok(x) = sinkTx and .
the eigenvalues are wk. (kn)z. Control of vibrations of the beam, may

be based on the performance index

DR ' 2,2 S
o - (36) J (u) = f: [flo‘ fz(t,x) + qihz(t,x) + qzht(t,x)dx)] dt :_:‘:_:
o ffq
:E: - Numerical studies of this problem were reported in (Balas 1978). A f§§1
;: ;ﬂ point actuator and a point sensor ]
j. o (37) £@,x) = u(t) §(x - X
2 y& = h(£,® § (% <% ) ®
L :
", were used to effect control in the problem. Spillover into the D

i

..1‘

. uncontrolled residual modes produced instability in the simulations, ’*q
: Y
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. l due in part to the absence of damping.

I
r.
R This problem is considered in more detail in section 3. -
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2. Wiener-Hopf Methods for Control System Design:
The Davis-Stenger Algorithm
The connections among 1least squares optimization, spectral
factorization and algebraic Riccati equations have been considered
important in control theory for many years. (See, e.g., Anderson
(1967), Brockett (1970), Willems (1971), Molinari (1973a,b), Helton
(1976), and the references therein.) To see how the connection arises,
consider the standard finite dimensional, infinite +time linear

regulator problem
. d 2 2
min J lut) ¢+ |y ]%at

1) xw)

Ax(t) + Bu(t) , x(0) = x0

y(t) Cx(t) , £t <20

Suppose A is a stable matrix and (A4,B,C) is a minimal finite
dimensional triple realizing the transfer function

(2) 6(s) = ¢(1s - A)1B
Then the optimal feedback control for (1) is given by
(3) u(t) = -B*Kx(t)

with K the unique positive definite symmetric solution to the

algebraic Riccati equation

(4)  ask + K( - BB*K) = -C*C
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An integral equation for the optimal feedback gain may be derived

from (4). Let s be a complex number not in the spectrum of -A¥%,

‘. o (-A*), nor in the spectrum of A-BB*K, then
& . . ‘ .
o (5) xt1s - a-B*K) 1”1+ (-Is - a9k = (-Is - a%)"lcscl-1s - (A-BB*K)]
h Prom standard results (Brockett 1970),c (A-BB*K) is contained in the
. : open left half of the complex plane; and, by assumption, o (-A%*) is in
: ) the open right half plane. Let I' be a closed rectifiable contour
r‘: encircling g (A-BB*K) in the positive sense, and integrate (5) along .
Since . - T
' 1 -1 B
. . —— Jplis- A -BB*K)] ds = I
27i
‘f:" (6)
B L fop1s - Ay las = 0
27 i P
| K
; , we obtain »
i 1 -1 -1
- (7) &k = —— [p[-Is - A*] "C*C [Is-(A-BB*K)] "ds
" 2mi ’
and s0
1 -1 -1
- 8) x8 = — fp E1s - A%])77C*C [Ia-(A-BB*K)] Bds
e 211 :
['—_? Since the integrand is the product of two rational functions, the

. contour may be deformed to yield
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2 ! = -1 -1 s
KB = — [ [.riw=-A*] “C*C [Iiw~ (A-BB*K)] “Bdw

‘ (9) 2m -
SN The spectral factorization identity (Brockett 1970, Willems 1971) ::'::ji
S A
o N

= HGw) = I + & ({w) G (w) ’:""

s - -1

10) = I + B* [-Iiw ~ A*] eac [Iiw - Al B R
= F* ({w) F @{w) s

- i -1

=[I + B* (-Iiw - A*) 11(3] {I +B* K (Iiw - A) "B) E“'

and the identity ;?2:

- o -
A1) € [Tiw - @ - BB*K)]1 "' = C(tiw - A" 1B + B*K @iw - ) B E;
o - N

.. ~. N
'_-_.‘ v .:_{1

. LIS
- when used in (9) gives the result T

) 1 L

(12) B*k = — [Ztr*(im)]'

¢ v . . s

' .n .

./ \ s
a0 e

B*R* (iw,A)C*CR (iw,A)dw y

e 2m S
- ‘A -7._:\
A . e
-2 where R(s,A) = [Is-A] "1 is the resolvent of A. Y

,ﬂ
TY

:Z;i Hence, to compute the optimal feedback gain, we can either solve e
-
R the nonlinear algebraic Riccati equation (4) for its unique positive "'
5 — definite solution or we can carry out the spectral factorisation of s
:::: L I+G* in (10) and then compute the integral (12). 1In finite S
": dimensional control problems there may be 1little reason to favor ::?:Zj:
UL formulation of the computational problem in one setting - the Riccati e
X I;-I equation - over the other - spectral factorization. 1In infinite :‘:::j
;.::I dimensional probiems , however, the spectral factorization method ;:232‘
'_'..' - ':\-,
% U appears to have superior numerical stability properties over direct _I'-"'
2 -
S integration of the Riccati equation.® \
SN N
P o
= C 18 v
-7 e
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A 2.1 Davis's Method ::
= -
;: - In a series of papers, J. Davie and his students (Davis and izi
'v = Barry (1977), Davis (1978a,b) (1979) (1982), Davis and Dickinson _‘__
- E? (1983)) have explored the application of spectral factorization b
?N methods for control system design to a class of distributed parameter }ig
models of long trains with multiple locomotives. The control problem ;i;
iw is to modulate the acceleration of individual locomotives to minimize ;f*

deviations in coupler stress throughout the train. Disturbances
include passage of the train over a grade, which tends to set up a
"travelling wave" along the train of stress deviations from nominal.
i; E: The first approach to this problem which comes to mind is to write out

the equations of motion of the cars and locomotives in the train and

Ca ot
’i .‘ formulate an optimal control problem for the overall system. The :77
E large dimension of the resulting model and the absence of any special EE;
} structure inhibits this approach. Decentralized control schemes ;fﬂ
5 FE (McLane, Peppard, and Sundareswaran (1973), Gruber and Bayoumi (1982)) :::
i; .. are not particularly effective for these problems. As Davis and Barry _;
Z? - (1977) have observed, aside from the difficulties in solving large ?;
- s scale control problems, one has trouble estimating the effects of -—

system parameter changes or of variations in the number of units in a

SR block based on lumped parameter models. o
S o
;E }j Davis recognized that the mass-spring nature of the L
. interconnected system could lead to traveling wave phenomena setup by e

t N}
.
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‘ "competing"” local controllers (locomotive accelerations). He reasoned
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that the macrosopic, widely coupled motions of the elements would

10
*

. l'

..l.‘.'

contain the bulk of the emergy of motion of the total system. This ;z..
i3 hypothesis suggests that a control scheme designed to suppress such thf“
motions would achieve substantial reductions in the coupler stress :\;
levels. N__':.'
YR To represent the system in a fashion which would capture wave '” i.f.
Pi phenomena most naturally, Davis reformulated the system as a
' ‘;3 distributed parameter system with boundary controls. (Davis and Barry
F = 1977). The resulting model proved to be mathematically tractable. :
; The effects of changes in both system parameters and the number of
k . units in a block were readily apparent. In fact, an increase in the .
J .* number of elements in a block increases the validity and usefulness of L:F:
::4 e the model. In contrast, finite dimensional models tend to become ?
_?l - increasingly intractable as the number of units in the system .fw.:'
2 c increases. :
::: .. Davis' modeling technique is simple and instructive. Consider _‘;
the mass -~ spring - damper system in Figure 2.1. The dynamics are ‘-:-".
=~ —
: 2 )
:': 3) m ;;2 x; = -K & + 2% - xg4) -mcgg by t2x - X1 '
at :;:
where x,(t) is the deviation of the i'h mass from its nominal :
-’ - position. The continuum approximation to this system may be developed :"‘
C as follows: Let 2z ¢ [0,1] be spatial position along the “"rest i_
.: n length”, unity, of the overall system, and let u(z,t) be the deviation ~
;3 2 of the mass at rest position ¢ and time t. Making the identification
A : 4
1 _\:
. Y
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Figure 2.1 Discrete element model for viscoelastic bar

v
v
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(14)  w@/m,e) ~ X, ®), i=0,1,...,

and using the numerical differentiation formula

1 1 1; v 3"u
(15) W2 {uz+ 'ﬁ)- 2u(z) + u(z- E] “'3—23 (z)

One arrives at the distributed model equation

2 2 3
06 22y ax. gt oo B '
ot 9z 9z 4t

as an approximation for the motion of the system. Rewritten in the

2
form -3—‘2'=3—-s(s.t)
ot 9z
2
() s(z,t)éx-a—“ 9 u

3z T 3oz

the equation describes the longitudinal motion of a visco-elastic bar;
the term s(2z,t) represents the stress in the bar, here proportional to

21
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a linear combination of the strain and stress rate (Davis and Barry

i 1977) (Greenberg, MacCamy Mizel and 1968). The natural boundary
. N,

ﬁ a conditions for (17) are in terms of s(z,t) at z=0 and 1, i.e.,

3 “ (18) 5(0,8) = £,(8), s(1,8) = £, (£)

5

MU the applied forces and u(z,t), ut(z,t) at t=0.

= Rescaling time at t' = t/(k/c), the system (16) may be rewritten
T in dimensionless form as

5% 3 3 u . 9% ‘
(19)-3—;5-aa—z- So+ (3 + 3 ) 0<x<l, <0

with a = ¢3/kMN?. And this may be written in matrix form as

3 uz - - 0 2——‘ “2
. [§ -
; — % oz
ot |u ag 22 u
(208) az .a aza t 0$x$1, 0st

' oy
SR =f_ (t N
B (20b) No[u, + 9] (0,t) o () ::\"
5 Ny (U + Uge) (1) = £, (8) N
u, (z,0), u(z,0) given R
, N
- Let A be the matrix differential operator on the right in (20a). '.'_'._-:;
. s
r Defining H = I3[0,1] x 13[0,1] with the energy inner product, P
_,1
. e
b
N

22 e
!; T




u o A _ -
(21) < (.t q 1> fo (aup + vq) dz

EE then A on H has domain

E? D(a) = {[313 u,v,v_ absolutely continuous u_,v €Ll (0,11, 5
R x x’ xx .
¥ ' (22) :
t: u + Vx =0 at x = 0,1} i
JOEN o -]
ll dense in H, A is a dissipative operator, and A is the infinitesimal

generator of a class C()contraction semigroup Tt on H (Davis and Barry

1978, Theorem 1). Moreover, the resolvent

(23) R(s,A) = [ : e St T, dt

"rm"‘l v
. AR
' ~ PO I PR
.« .
W e
[9%: LU Yt

L) D NS
£ ]
ettt
s

of A may be computed explicitly. (See section 3 or Davis and Barry

1978.)

It is not poasible to write the solution of (2) in the strong

form o v

-.

(24) .g% =AU+Bf(t)"

where
I T
U= [ u,. ut] £ = [fo’f1]

B:R'z"ﬂ

(25)

since the boundary forces correspond to generalized function "inputs”.
Using L~ as the inverse Laplace transform, Davis and Barry treat (20)

in the form

(26) U =T U + L {G(s12) £ ()}




b
[
R
’
¥
’
1}

> .

ROIRE 1

I‘ where G(s;2) represents the "transfer function matrix" associated with

the boundary value problem (20).

The (optimal) control problem involves minimizing variations in

3 [AAAAXANR - EEORS

1. .‘n. _“

the stress distribution throughout the system. The quantity

5
e

-
.

)2 dz om=a/n

~aTaT i
DRV

.,,r,--
] A .4.¢‘
), . +« N L

1l
o Z 2 - 1 2
- (27) (J)’ a“s® (z,t) dz fo o (uz tu

corresponds to the total stress in the system. Recalling the original
approximation (13)-(16), we have the correspoadence

N
C 2
(28) f; az(uz+ uzt)zdz N Ni§1 [ﬁ (xi - xi-l) + n {xi - xi-l)]

and so, the natural quadratic cost functionel is

2 2 .11 2 2
(29) J= f: { Ifo(t) | + Ifl(t)l + 5 fo a (uz +u z) dzldat

t.

This formulation includes stresa contributions from spatial modes

of all wavelengths. In most physical systems high order modes will

have a negligible contribution to the overall behavior. Using '“p to
denote projection onto the subspace of H spanned by the first p

eigenfunctions of A, and defining the system output as

(30) ¥-(z,t) =all,d,} [wpu] (z,t)

the final formulation used by Davis and Barry (1978) is

1
min 2 2 .1 2
e R LT RE LAY +n£}yumndﬂat

Tt T T T Tt TR e T TRt Nt T e T St =y
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U(z,t) =T, UO) (2) + 1} {Gisiz) £ (z)} (&)
y(z,t) = al1,3,) [T 0] (z,t)

u(0) € naycr?ro,11 x 2[0,1]

The resulting optiﬁization'problem is a distributed control problem

with state cost restricted to a finite dimensional subspace.

Davis and Barry (1978) compute the optimal control law for this
problem using the spectral factorization algorithm described earlier.
A key step in the procedure is application of a numerical algorithm
for spectral factorization due to F. Stenger. In the next subsection

we summarize Stenger's algorithm.

2.2 Stenger's Algorithm for Spectral Factorization

To evaluate the control law for a given problem modeled as in the
last subsection, we must compute the spectral factor F(s) appearing in

equation (10). That is,
(32) F(s) F(s) = H(s) =TI +G (s) G(s)

where G(s) is the transfer function of the system being controlled.
The first problem is to determine conditions under which the spectrgl
factor exists. Since G(s) is the transform of a real vector valued
function, which we assume to be integrable and square integrable, it
follows that S(s) -'G'(s)G(s) is a Hermitian positive semidefinite
(matrix valued) function and G*G is the transform of a function which

is in 111 12

25

* ) e :’:-._'-‘1:- ."- ’:_."_\ ‘.‘- '_:.".’q'\ NS J,'h-i\ ‘.“Q ';‘u' .




p o e N USRS ATRRTRG
-

ST

li Since S(s) is the transform of a function in L%, it follows from
g B the classical theory of Gohberg and Krein (1960) that H(s) has a
E E} unique spectral factorization of the form (32) where
i . Fﬂ -1c¢€ F(LI) { = Fourier transforms of I.: functions)

(33)
F(iw) = F(-i@)

where L' denotes those functions in L with positive support. As noted

L T T e

in (Davis and Dickenson 1983), the assumptions on S(s) in fact imply

[ ]
(34) pt_1¢ F(LII'\L;)

i: ™ and F(iw) = F(-iw. These conditions, therefore, settle the question
i: N of existence and uniqueness of the spectral factor.

LA
' ]
4

In (Davis and Dickenson 1983) an iterative algorithm was given
for computing the spectral factor. Since this method is at the heart

oy of our computational programs, and since it makes use of Stenger's

0
(3
A

* -
Se

-

N . .
Y .
-
--.‘
-

" .
)
-t
Y
-

.

'l‘ e

b

algorithm, we shall develop it here. The starting point for the

iteration in (Davis and Dickenson 1983) is the Newton-Raphson

-]
iteration for the solution of the algebraic Riccati equation (4); -j}i
-

that is, s
K. (A-88"K)+ (@a =" * * T

(35) n+l n BB K, Ker ™ CC “K,BB K, N
From this a simple calculation leads to the desired form of the ;gf
iteration for the spectral factor (see Davis and Dickenson 1983, pp. iijq
f.\..\

290-291) R
PASA

' " -1 -1 NS

(36) Fpep = B LFY) 8GR 1 Fy f_:
R

: »:..':'3

vwhere 2*[-] is the causal projection operator defined on the };;
e
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convolution aigebra I ¢ L}, oronlL, by

. [- -]
sl =1+ L £(E) e

0

-iwt

(37) P, T +J £t) e at

Stenger's ﬁlgofithm is used to provide a numerical approximation to
the causal'projection operafor. Before discussing that, we note that
under the assumptions on G(s), and therefore on S(s), that the
iteration may be shown to converge from a suitable initial guess to

2
the uniquely defined (in L") causal spectral factor F(s).

The algorithm (36) has a particularly simple form. As noted in
(Davis and Dickenson 1983), the computation of R+['] is the most
difficult step, but Stenger's result takes care of that. The

numerical approximation in (Stenger 1972) takes the form

A r
Letkh + ) © — B

(38) 7, [£] (@) = £ W, m -kha )

Here h is the step size and I and am are parameters defined by

Stenger. Specifically,

1
(39) a = Y =a—Th  m2
" l-iqm m 4kiK L™

where q is a parameter chosen in the algorithm and

(40) K= (a/b)? k = dmb2
© 2
a= 2§ @ b=1+22Lg"
m=1 ' m=1
27
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i ii The step size is chosen based on the bandwidth of the transfer
P ~ ~
} function f(s). If, in (38), one chooses to sample the projection f+
§ :i at the same sample points as f, then, as observed in (Davis and

v
.

Dickenson 1983)

N - T, r
- (41) £, (kh + $h) 3 £(jh + %h) é m

-' g (k=3)h-a_h + ¥h

3; i: and it is clear that the required calculation is a convolution. Since

;} . the range of sample points is finite this is naturally implemented by R
a fast Fourier Transform (FPT); and this substantially improves the C
: computational time. zj;f
: : N
- 2
Since we must compute (F*) S(F )™1 in the iteration (36) for the e
n n r-—l
spectral factor, it is best to rewrite the iteration as \j?j
-1 -1 v -1 o
- -1 -1 A
(42) (F,,) (F) © (T + P [(F)  s@F) -11) o
and execute it in this form. As observed in (Davis and Dickenson n[;?

1983), the 1last factor in this expression is a perturbation of the
identity: (since (F*)"1s(F )™l - I+ 0), and this has natural
n n

advantages in the numerical realization of the iteration.

As suggested in (Davis and Dickenson 1983), a suitable choice for

the initial guess for the spectral factor F0 is the diagonal matrix
:} whose elements are (scalar) spectral factors of the corresponding

diagonal elements of S. This choice implies that the matrix

LE [i (F*)"1s(F )~1 is a matrix with ones on the diagonal and with all the

n n -
.." ~“.'_‘1
.; . off-diagonal elements 1less than one in magnitude. This tends to 53\5
BE - prevent the iteration from blowing up. The diagonal factors may be Z§:3

‘s
»
Y
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L: 28 :
o . . ..'.-.
N -_3
. A
‘:. R PR L R R R R R RIS R R Y gy ¥ - LI R IR T P T P L St I . ~_,-.'.‘_--' Ny
B T O S S S A e A R A L G LA A N et NN




A AN T

obtained by an FFT implementation of the scalar algorithm in (Stenger
1972).
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The method as described here was implemented directly on the
problem of controlling the dynamics of the Euler-Bernoulli beam. The
results are shown in the next section. A careful consideration of
Stenger's method suggests an alternative implementation of the
algorithm which takes advantage of the occurence of Hilbert transforms
in the course of the computations and the effective use of these
transforms in the representation of the causal spectral factor. This
observation permits an efficient numerical realization of the spectral
factorization procedure. We shall develop this in the context of

design of stabilizing controls for a two dimensional flexible

structure. This result and the associated algorithm are reported in

section 4.
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3. Control of a One-Dimensional Structure

The control of simple one dimensional structures serves to

illustrate the general analytical methods in the simplest form. One

dimensional models can also represent certain components, e.g.,
flexible beams, which appear in composite large space structures; and
they may represent certain two or three dimensional structures with
natural symmetry. In this section we consider a simple system, the
Buler-Bernoulli beam in detail, working through the computation and

simulation of the optimal stabilizing feedback gain.

L‘_ . i
3.1 Control of a Flexible Beam
The dynamics of an undamped flexible beam undergoing transverse :iﬁﬁﬂ
L ]
}
notion are described by the Euler-Bernoulli partial differential T

equation
u,, (t,x) + EIu (t,x) = £(t,x)

T
1) 0<x<L, t>0 "

where u(t,x) is the transverse displacement of the beam, f(t,x) is an

appiied force distribution, m is the mass per unit length, I the
moment of inertia, E the modulus of elasticity, and L is the beanm —

length. To facilitate comparison of our results with earlier work

(Balas 1978b), we shall assume that m, E, I, and L are all unity. The T
N,
boundary conditions for pinned support are .faja
ult,0) = 0 = u(t,1) S
(2) : RO
uxx(t,Q) =0 = uxx(t,l)

The beam is controlled by a single point actuator

30
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(3) f£(t,x) = —= S(x-a)v(t) , 0<a<l
~2

and a sfhgle"sensor measures displacement
(4) y(t) = u(t,b), 0<b<1

The system is deterministic and actuator and sensor dynamics are not

modeled.

. 9
[ Balas (1978b) designed a feedback controller for the first three 5&
modes of the beam which minimized the (unweighted) energy in tnose ft
A
x modes. His controller includes a six-dimensional Luenberger observer il

to reconstruct the state.:  The energy in the fourth (residual) mode

increases rapidly due to spillover effects.

Our approach to this problem is based on the infinite dimensional

model. Taking the Laplace transform of (1), we have

Uxxxx (s,x) + 32 U(s,x) = F(s,x)

(5) Uu(s,0) =0 = U(s,1)

Uxxx(s,o) =0= Upy (801)

the Green’s function for (1) (5) satisfies

(6) G._ (s,x|x?) + szc(s,xlx’) = §(x-x')
PRSTe !

Consider G in the form

' A sinh /5 x)  O<x<x'
(7) c(s,x|x") =
B sinh f3 (1-x)) x'<x<1

with A and B complex constants to be determined. Note that the

O A L LN (O I AN (R (G
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boundary conditions in (5) are satisfied by (7). At x=x' we have
(8) / G ax + s° f Gdx =1

(See Tai (1971) . From (6) (8 ) we have

A -1 inh 1-x')
(10)( \ o s s

B) s3/2 sinh s |\ sinh s x'

which gives the Green's function.

The transfer function relating the input f(t,x) in (3) to the

output y(t) in (4) may be written down immediately from G(s,x|x').

1

o C(s,xix') F(s,x')dx' = 1 G(s,bla) Vv (s)

2

(11) Y@6) = u(s,b) = S

with V(s) the Laplace transform of v(t). Identifying
(12) T, ) = Gis,bla)

we have

32
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-(8inh a s) sinh (1-b) s) , x'ma<bex ".:

/2 8%/% sinn/a”
(13) 7, @)= P

ab -
=(sinh (1-a) 8) (sinh b s) x=a>bex ‘:“

J25% sim [5 ' 5]

Balas (1978) uses a -% , b --:-; and for this case we have ~.
o~
_ - (sinh /s/6)° Co

o (14) T () =7 (s)
. B %% 2 532 ginn /s T

!5 L To use the Davis-Stenger algorithm as described in section 2, we Ef

must compute the spectral factorization of

r (15) B@) =1+71) @ T, @ " ©F®e)

Substituting, we have

(16) Haw) = 1 + 3 8inh/10/6)? @inh /“iw/e)? :
(w)3/2 iw)3/2 sinh /ie sich /~Tu~ B

and the computational problem reduces to computing the spectral factor'

o P*(s) from (;5), and then computing the optimal atabilizing feedback o

gain

(7)) Bk == 2 r dw) ¢ Gw cRAw, A) o

:-\‘ N
<

v by numerical integration. “a
“r . e
N

."_\:

ol

o

= =
<. :.:..
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3.2 Numerical Results

In the computafiona and simulations which follow, we consider the

;i same beam parameters used by Balas (unit length, with parameters

c normalized to one, and zero damping). The numerical requirements of =

o the algorithm are not changed for more realistic choices of ﬁif

-~ parameters. In addition to the case considered by Balas (with one Sﬁa

T Tl

- controller and one observer at opposite ends of the beam), we also Eff
E; 'ii consider the effect of increasing the number of controller; and ﬁ;u

observers, and finally the effect of delays in the control loops.*® thf

Practical implementation of the algorithm requires frequency
- {1 sampling of the transfer function and spectral factors, and spatial

. and frequency sampling of the resolvent. It was determined

experimentally that for the given beam parameters, a frequency range
" of plus/minus 30HZ is adequate, since the gain from input to output in

the range beyond this is insignificant, see Figure 3.1. The figure
Y also indicates a very smooth dependence of the transfer function on

< frequency, so that the 256 sample points used in the program are quite

SEE adequats. Spatial discretization 1is done using 100 equidistant :

=]

b -, An example of the feedback gain is given in Figure 3.2, for the {éi
= velocity state variable, and in Figure 3.3 for the displacement state e

variable. (See Appendix A for other gains corresponding to different

5y
o

R A )

3
LINL A

e *The issue of the effects of the delay on the control action and

l: the system stability was raised by Dr. J. Burns, formerly with
AFOSR, and now with VPI&SU, Blacksburg, VA. We are grateful to
Professor Burns for his inputs on this problem.
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arrangements of the controllers and outputs.) A sharp peak at the

point of observation for the deflection state indicates the control
effort to reduce the deviation at this point to zero, since only this
point contributes to the optimization cost. In this case we have
penalized the state deviation at the observation points (in the cost
criterion) 500 times more than the control, so this is “cheap

control.”

The feedback gains, one for the speed state and the other for the
deflection state are integral operators as defined by (17). These
gains are computed off-line. Computation of the input function for a
given time requires evaluation of the integral operator B K acting on
the state. This is accomplished in the program by approximating the

integral as a sum of piecewise constant functions.

In controlling a physical beam one would need an observer for the
deflection and velocity variables that would use (point) observations
of the beam deflection as inputs. For the simulation results here the

deflection and its derivative are obtained by numerical integration.

The case studied by Balas, where the controller and the observer
are at the opposite ends of the beam, exhibits poor observability and
controllability, which is reflected in the large control efforts and
long settling times to stabilize the motions (see Figure 3.6). Using
more observers and controllers substantially improves the
"controllability". of the system. For example, in the case of three
collocated, equidistant éontrollers/measuroments, the margin of

improvement can be seen by comparing Figure 3.5 with Figure 3.6. See
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e also Appendix A for the time responses corresponding to these two
‘ cases.

Delays in physical control loops are inevitable due to the finite

o

EXAONNNN, " 3
el

time necessary to process measurements and compute the resulting

2 fs controls. Analytical treatment of delays using time domain models is
z ‘ not nearly as convenient as it is in the frequency method described
: here. For example, if the delay is T, then we need only multiply each
sl element of matrix H(s) in (15) by a factor exp(-sT). Therefore, H(s)
éé - is invariant with respect to the delay, and the critical part of the
:: ;: gain computation algorithm, i.e., spectral factorization, need not be
- " recomputed for the delayed case. Of course, the delay appears in the
Eé - transfer function, and so, a new gain must be computed for each
.3 .. different delay. (Numerical results displaying effects of delays are

discussed later.)

- To validate the program, we simulated the response of a beam

c: subject to an initial disturbance in the form of one of the spatial
;: i modes, and with a feedback based on the optimal control discussed
R0
L above. Figure 3.5 is an example of a time variation of the beam at

the observation point. (Other such examples are given in Appendix A.)

Note that without the control this response would represent an

l. -‘
.-.-

undamped oscillatory motion since the beam model does not include

0
LA
o4

damping. Damping has a stabilizing effect in this system; and the

()

Q)
o
0

control action is enhanced if damping is present.
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<. - ) The plots summarizing numerical work on the example problem 3:2
'i appear in several groups in Appendix A, and they are grouped as it_
ﬁ:s - followa. For a given delay, and a given number and position of 'fii
é% gs controls and observations, we first display gains for deflection and ;é?

velocity states, both for each of the inputs. Next is a group of

)
[

7%
R

- plots showing the beam response to the optimal control when the beam ?li

‘l
I3

’
’

i - is initially displaced in the form of one of the firat three spatial
- modes. (Significant components of the matrix H(i ) are well below ;:;
30Hz, i.e., below the frequencies induced by the 4th spatial mode.)
The meaning of the plot titles is as follows: "Beam at x, yth mode,” i%}

r means that the beam is initially displaced by the y-th spatial mode,

and the deflection of the beam is observed as a function of time at ff}

point x. On thé control plot we indicate the position of the point ia}
= i: control and the time evolution of the control at that point. rk‘
) While the main purpose of conducting <these experiments was to ffﬁ

BANNEND

verify the control algorithm, several phenomena were observed from

these experiments. Comparing responses of higher order modes with

e those of the lower order modes, it is evident that more energy is

needed to control higher order modes (note that our model has zero

L

— - damping). This reflects the poor controllability and observability of —

T i

,{k the higher order modes. Second, the gains for the deflection state 5

:ﬁz {2 have pronounced peaks at the observation points, suggesting use of ;ii

) localized ~ decentralized feedback. Unfortunately, the speed gains 7??

v indicate much more spatial ‘ coupling, suggesting that decentralized ::{3

:i o control schemes may not be effective (at least for the parameter ‘:%

{g ranges used in this problem). Third, the delay has a substantial 1
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effect on the performance of the control. (Compare any case with

delay from Appendix A with a case with no delay.) Nevertheless, the

M __ 1

stability margin is remarkably wide. An example from Appendix A

indicates that a delay equal to ome half period of the highest mode in

R s
(i
-

the chosen spectrum does not destabilize the system.

The numerical results presented above affirm the Davis-Stenger
}i algorithm as a practical tool for vibration control of flexible
structures, represented here by an Euler beam model. The results of
this algorithm provide a means for asseasing effects of
controller/observer placement on the system performance, as well as
give stabilizing feedback gains, once the controller locations have
been selected. It was also demonstrated that the underlying model

allows an efficient treatment of delays in the control loop.
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li 4. Control of a Two-Dimensional Prototype System
:;‘ In this section we adapt our frequency domain control system
e design procedure to treat a prototype two dimensional flexible system
. - a membrane/mesh whose dynamical behavior is sensed and controlled by
: . electrostatic forces. The model is patterned after an experimental
system studied by Lang and Staelin (1982b) as a paradigm for an
EE} E;: electrostatically controlled large aperature reflecting satellite
i; : antenna.
= -

While the starting point.for the control system computations is
similar to that for the Euler beam, our analysis takes a somewhat
-. different tack. We shall exploit the appearance of Hilbert transforms

in the derivation of'the'spectral factor and the simple way in which
these transforms can be used to represent the spectral factor

appearing in the expression for the feedback gain. As we shall see,

there are some significant computational advantages obtained in this

fij - modification of the Davis-Stenger procedure. RO

In the next subsection we describe the model and compute the -

A_ —-—1

.‘ . . '... -

transfer function. In the following subsection we write the solution o

. for the mesh dynamical system in terms of the eigenfunctions of the ::g:

ns evolution operator. This provides an effective and accurate basis for #

Eﬂ 25 numerically simulating the (controlled) system dynamics. It is j{ii

éj _ superior to nurerical solution of the PDE model by finite difference :}‘E

b methods. ©
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4.1 Dynamics of a Vibrating Membrane

The physical structure of the prototype experimental system used

by Lang and Staelin (1982a,b) was described in section 1.3. We shall

describe the mathematical analysis of the system here. The linearized

equation describing the dynamics of the voltage controlled mesh is ‘_:T-__:.-

Ty 2’ Taa’m _wan %V €V
(1) at> M a4’ Mag2 Mot ME M
h=0 on boundary of [O,L] x [0,£]
- h©,a,8) =0, h ©0,a,8) =0 : ':J
% t“ where the boundary conditions reflect the fact that the mesh is pinned rn_i.}

along its boundary. To reduce the computations, we make a change of

t‘_ﬁj o coordinates to remove the derivative term in (1); that is,
i (2) he) = £@&) exp {-—-2: t}
T 2 €
We obtain 3% Ty 2f T8 3 2, 2y 0v o
I _2 I — ———2- — —2- —?—— £f - ’—-—2 { - '2‘; t } v BN
ot M 3o M 38 M MH D
L ~

(3) £=0 on boundary of [0,L] x [0,L]

£0,24,8) =0 ft ©0,x,8) =0

N Let us define the parameters

, 2 2,
aa. = ‘I‘a/M, aB = TB/M, Y = 2€0V /MI-P

) (4) o
~aju = 0 exp M v
:' AR B Mﬁz 2M

and using these in (3) we obtain

o
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By

; £
o 2 2, 2 2 o
8_2f B £ +au 3-'7 + v F+a8u "

B . ot a? % . L

E (5) £ = 0 on boundary of [(0,L] x [0,L] .

X £=£ =0att =0

- -~ 5

) It is possible to reduce the equation further to the standard form for By

= wave equations; but we shall not do this since it will complicate the "

S boundary conditions.

-'_:j X .

j Taking the Fourier transform in (5), we obtain :—
y 2 2 T
3°F 3 F 2

T i) 2 F W)= a —2— + a = + YF + aju
L (6) S ° i

r: F= 0 on boundary of [0,L] x [0,L] *_

ol

.f- T By splitting F and U irto real and imaginary parts, respectively, we '.:
) are led to the following equation

2§ —- -
-I 2 az &

3¢ H H , 2 2 -

7) a, S5 + a; === + (Y +0u®) E=-alv

NI (M 2 3a 2 B a8 B o
SR =
- . D
[: Our immediate objective is to find the Green's function corresponding :

o to the boundary value problem (7). ::j;:
b l'_:::
. To accomplish this, we shall reduce the problem to a one !--‘
"" dimensional Sturm-Liouville problem. Consider the operator bRy

.}:; o Ly 8 = "3y 32“ - Y + W ) u :_
SO (8) s
with v (0) = u(l) =0 _—

.::: = Using this in (7), we have :E:::
b ag 3%n L H=-agu =

(9) 382 —

H= 0 on the boundary e

\~..-.-.....'/ -,
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B v
. and so, the Green's function satisfies the PDE
aazx-LK--Gu-E)G(B‘
B 3B o =n)
< (10) '
Ka,B =0 on the boundary of [0,2) x [0,%) :
| N ) P
L Let ¢ (@) be the eigenfunctions of the operator Iy, k = 1,2,... . -
' We shall compute the Green's function in the form
h : (1) x@,B8,¢ A @ ¢, @ o
- B, EM) = ik k e
We define the weighted inner product 1"',;::'.
r~ - [:-
¥ (12) < &y > =[S ag ¢y where & =(0,2) x (0,4 i
Q

. .v'.‘v 7:"’."’. -"

Substituting the expression (11) for K into (10), we obtain

a, £ an, @4 @- % a Brg ) @ =-8@-L) §(B-n )
c . . _
ut ¢ k(oL) are eigenfunctions of L e
(14) Loy (@) =X ag, @ i
) , ?.'.-:'.
- = Multiplying both sides of (13) by¢j(a) , J# k and integrating over O —
é’, ) we obtain
¥ r fL . L _ _
; 2 L e ® g @ 0 e -s A aga B 6 @ 650 P
0 [ e
(15) __..
= -/, §(a-§) &B-n) da N
oy
- which implies (using the orthogonality of ¢ and the properties of the t:::::
[
delta function) ""r
LY .‘:?::‘\'3
e NAN
- .

-. o' - - - w "
ROE AR SO A LU A%




A @ "X (B = 0LE) S(Bm)

(16)

a0 = aln) =0

This is a classical Sturm-Liouville problem.

The eigenfunctions of the operator L satisfy
2 2
L %axk%‘bk =-aa¢k - A +w) Qx
(17)
b @ = '¢k( 2) =0

It is a simple calculation to show that the eignevalues are
- L.t.w— n= 1'2,_._
(18) A —!22—

and the eigenfunctions are

(19) 6_ @ =/%sin (n"a) n=1,2,...
n .Q, —2,—

Now we have to solve the Sturm-Liouville problem (16). Referring

to (18), we have to consider the three cases: )\ > O, A = 0, and

A < 0. Note that for each fixed ® there is only a finite number of

negative eigenvalues. To solve (16), it suffices to solve

a" - Aa = - §B-m

20 ~
(20) a) =a(l) =0

We have dropped the indices for convenience and the term ¢n(€) which
will be handled by multiplying the resulting Green's function by the

same factor.
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N L
>' i ‘Case 1: A= ;F >.9°. -
S =
>
W
1“,: kS It is a simple matter to show that the Green's function
) - associated with problem (20) is
G (Bn) = 1 sh (u{@-n)) ,sh@B) 0<B<n
(21) —=—— {gn - 8) <<t
ush @?) un) shp @ ) n
where sh(x) = sinh(x). To obtain the desired Green's function
YLE associated with (16), we simply multiply (21) by ¢n(€). This gives
. (BT, ~ ' _ - 3
S (22) G M) = 2 sin’ "7 sh @ (t-n)) sh@B) o<Bn o~
- i ' 2w shtu £} Ishn) shu (2-B)n<B<t L
-n i
5 : R - S _'~.f:\l
N - NN
Tl ‘where B =/, ::::-_:1
A A
L 2¢0 -
Case 2: A= -U : S
4]
- Arguing in a similar fashion we find that the Green's function :
- & associated with (16) for this case is
::; - .
N - h @_B) 0<B<n
no sin ENE (MU, 0 shoy n
(23) S, 8™ = T T D )shen shh @-B))  n<B<R
n n n n
C
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Cage 3: A=0

In this case the desired Green's function is

4+ D £
8. _/_; sin —=— — * B (2-n) 0<B<n
(24) Gn ' L L n (@-8) n<e<L

——— .

Note that (22) and (23) can be given by the same formula if we
take y to be a complex number (either i'unl or tunl). Also, (24) can
be obtained as the limit of either (22) or (23) asu  + 0. However,
it is best to split the expression as above to maximize computational
efficiency. The procedure we have followed in representing the
Green's function has two advantages over the classical expansion of
the Green's function in terms of eignenfunctions of the whole problem
(as used in Lang and Staelin 1982b) . First, it reduces the
expression of the Green's function to a single sum instead of a double
sum as in the classical representation. Second, the series has a
strong convergence property. Since there is only a finite number of
negative eigenvalues, the main part of the series is given by (22)
which can be expressed in terms of exponentials. This series
converges exponentially fast. In fact, the bilinear eigenfunction
expansion for the Green's function fails in this case since ko =0 is
an eigenvalue for an infinite number of w 's, and the series diverges

in these cases. The complete expression for the Green's function is
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0 .
Xe8Em= 3 5 SMGO sieGFO  (sin g @-n) sinys
n=1 £ UnSinuni sin (unn) sin (un(il-B))
ar, . . m N
25) + €lny] % sin (€ ) sin T o BQ-1)
2 n@®=gy
% mé& oo, n
+ w3 sin( £ ) sin( L) .
n={n] +1 2 M sh & 2) ,Sh OJL’@-H) B 0<3an_
o . ] shaum) shty ®-8)) nea<s

Here we have used the notation

(26) ng

N

and [no].is the integer strictly less that.n,, including the case when

o, is an integer. Also,

(27) en] ={

and

0 no not integer

Y 1 n, integer

a 2.2 2, 2 ’
s +0)
(28) u_=/Ir | = |a—: -T2 |n=,2,.. )

28

Finally, note that the Green's function has the symmetry property

(29) K(G,B,E'n) = K(E.n,OL,B) for n<6<9,
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l 4.2 Transfer Function of the Controlled Membrane

A
N -
A Recall .the reduced form of the model (7). Using the definition

of the Green's function and the symmetry property (29) we can express

)

P the transfer function of the syatem as

l (30) H(a,B,uw) -.;21‘ ag &, @B,8m wEnw df an =<Kag>

5 Now consider the piecewise constant subdivision of the rectangular
i l" area of the membrane as shown in Figure 4.1

T ’e

N 7~=2
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D 1

g !
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£'° 5 52 ° In‘e

. Fig. 4.1 Membrane subdivision.
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I ' Assume that the control input is constant over each small

rectangle

(31) . Qij = [E:L'E:Hl] X [ﬁj' nj"'l] iljl =1, ...,N

That is,

_ £, SE<E, i
I (32) w (g,n,w =uyy W) for . * i+ Eo
. . . nj5n<ni+1 )

- 1

1

Using this, the transfer function can be expressed

- (33) N N

=§ z aBuij w) ff K(D (OL'B:E:H) dg dn
i=1 j=1 Qij

]

- P R
S Wt e e
LI P R
L AP
P TN S
POV

B<n,
nJ

To compute the integral over Qij it is necessary to' distinguish

o a2 & 4

three cases: B < Ny B > Ny, end Be | Ny nj.,.ll‘-

"y . .
' R
.t l‘l‘n

1 ’ Case 1: B < n,

‘L:l.'.‘ " '.' '.' '-' 'n' y NI o r'.

]
;' Substituting the expression for the Green's function (25) into .
oo (33), we obtain e
" d
/f ®’@,8,E,m dgan

E o 2, Iny -€ : Rot
, —_ nn na A —

=ff X 2 sin (% - ) sin (£ % sin U (In)) sin mne)didn

::7; Qij n=1 % ? '

(34) -

L
un sin(unt)

PR
...0‘1 [

nm nmw “
+éf e;- sin (T~ %ain (0 % s@-m afan
R i3 £

AT -]
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[:f ’ ~
. sin @~ 5 sin@— ) shy G- M) rEH agan

Q n={n }+1 2 [
13 e M, sh 4,0
' Bach of the integrals in (34) may be computed in closed form. " Ve
! shall omit the details and state the final result
< r -
RS {2 K @,B,E,n)d&an
w
| 13
|
{n l-€ nr_ -
= 0 2sin@® kin @ B) ~
§-1 2 — cos ‘P_iu cos W @-ny,,))
n‘l'fwh' sin QJ“Z) " 3
Feos () 1))
35) + 2¢e sin (" £.) -COSEQ_;__E ] E n2. l-nz, !
PR A 2t L IR ALY —-3———3-+2 _J
- —~d
. -~

'" ~
+ 2 sin a) sh @R chu_ (2~n.))
z %— 1 cos Qﬂ Ei)-cos (!% Eiﬂ_:“- o )
i

n=[n 1+ 2 & (e
sh(u l) chmn(l nj+1))

Lo . as
, . Case 2: B nj"’l
o The final result in this case is
l l ff Km \alslgln) dﬁdn A cos ﬂ.l n ) I
. ij - n - "_ - T_
: J [noé € 2 sin %——- o) sin mn -8) [cos @-2 Ei) cos (5-;' Eiﬂj —cos m n o) ’
; gey 1l omi sin 4 B L o
b 5 LA T B n® -n
R ' £ N —_ - o _ +1 .
s + W sin ( 7 ® 2-8) &os( Ej ) —cos (—— i +1)] .12___3
_ ; 2 sin (2L a) shy &-3))
' — e = a cos ( M g;)-cos nl E.. ) ch mnnj-u —
. nelnglel 2 ~ i+l eh ) i
;% iy b 6,0 1 Leenun, ik
: 4 Cagse 3: u, $Bsy ‘,';.-':":'-1
+1 ,-
! r 3 3 -
'._".:f ‘:f \.’ ‘;"n;' -,"-,' L I' N
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This case may be treated by substituting B for nj in Case 1 or

'l ' for nj+1 in Case 2. The final result is
S SIX, @, B, £, m dan

Foo e w

i o Q .

ij . i

{n.]- 2 sin ('—‘—-0.) -
I L 0 L cos (ﬂ{ )-cos G‘H— € sin Qu_ (~4))
oot = = 2 i L i+l n

n=1 nﬂuz sin (un!l.)

(57) x {cos (unﬂj)-cos CunB) + sin (unB) {cos (un (l-nj+1)) -cos mn ®-8))
< nyT
RS 2esin — O) . ] - .
+ —==7 2 cos @2‘1 Ei -cos (!}L— £ iﬂi x Eh (un ®-8)) {ch (unB) c annj)
o] ]

o 2 sin @—}{ o)

/\- _ A_ . } —_—
+sh mns) C‘_’l mn (2' B) Ch mn (l n]+1) ) ] n’[no]+l n‘n'uleSh (IJnQ)

cos (%I\‘,'i -cos (2—"&

i+1) xilsh (un @-B)) {ch (unB) - ch mnnj) -

+sh 44 8) ch_@-8) -ch bu_ (;--nj_,_l) )}]

56

ety

1. I‘ -,

-
" eyt '.'_'-'.\




T T e S T N L L e R T T T P e e e e

4.3 Solution of the elliptic system using the

discretized Green'a function

We can use the discretized Green's function as the basis for an

effective algorithm to compute approximate solutions to the system.

| 4 The algorithm is more efficient than direct numerical integration of
the partial differential equation. In general terms the procedure is

as follows: Consider the complex elliptic PDE

2 2
- aa——;i—+ba—§!-i+pu=-bﬂ in @
ol ox oy
- (38)
S )
ﬁ r“- H=0 on 3R, Q ={0,L] x [0,L]
EZ :ﬁ where a and b are as in (7) and p is a complex parameter (which will
i; depend on the frequency w ). Let
- ] 2.2
ii - 2, 2% _ranT _p.t

N L
(39) o
eo ho) 1 no integer
0 otherwise

Assume that the domain { = [O,L] X [O,L] is subdivided into small

rectangles as in Figure 4.1
(40) Qij = [xgo x5 17% [Y50 ¥ypq) d=1,000,0, 321,000,

~
let h = L/N and k = L/M. Assume that the control is constant in space
over the rectangle Qij and defined by its value at the center. That

is,




1
P—f,

1 = =

- ‘ Let Gij(x,y,p) be the average Green function over Qij

AR ol e T e T e

ISR S PR
" . el

s %t T AR -

.::: N (42) Gij &x,¥y/p) = ffg K&IYIE M,p) dEdn ‘::

A X i3 %
.
I:Ej Then the solution to the complex PDE is given by
R N M <

~ (43) B,y,p) = L E bu @) Gy &y.p) .

SRS i=1 j=1
= We introduce the change of notation o
S Gy b/ YiP) = GUX;oX; oYY oYy oP) : -_:i:
' , (44) ::::j
i Y5 ®) =u (xi,xiﬂ,yj,yjﬂ,p) P
B r
. f'_::. which will be useful in programming the algorithm. The function -:Z;'.
- [: Gij(x,y,p) will be given by the following expressions: __
- I = - L L-y., Ly. +G (- <
N (450) G5 %oveP) = {q Gox,x 0Ly, L Yyr DYy PI+G, ( )b,y v,
- &
T 1T _ _ o
o (450) G e¥eP) = G GuxiX; 0¥ VieYy 0P ¥6, ), yy<y =
l.) S
b %
e 58 e
e :~1-
'1:: t ;’:‘

llibe =<
N T,
'.':, -...
L, a & e . A e m e e e v % ' a2 e "a"atal L T T T T T N P I I P
N N e N T e e T e e R N e N e N e e T e D R R A
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...................... IR
'j'-'.'::
1 t 1 : 7
(45¢) GII x,y.p) = GII Gﬁpxlx1+1:YrYj4rYrP) +G b"xirxi_._lrl"yr L"Yj,,_lrL'YrP) J
: L
<
YiSY¥ZV¥y4 =]
L4 aad
where o)
L
iy
) ={¥% 2 — sin (2 =) sh (u, CI--Y)] } RS
Gl fi=l ml'h2 sh 4 L) -
n-#no n n ';_-H-g
(46a) | nmx, : mrxi.'_}} ‘ . ) 4
x {cos tm]':.—__-) - cos (__I-.._ x ich CL'luyj+1)-'c (unyj -_f..:-_j;
. x4
OO 5 n mx A nyT n, T
r (46p) S ) =em)) g sin ) Cey) © [cos (_— x;) -cos (-— *1+1)]
< v
o 1,2 2
AR x| - )
$ ."._ .. 2 Yj+1 Yi
E The computational algorithm based on this representation of the
- solution is given in Figure 4.2.
_C 4.4 Eigenfunction expansion of the solution
of the generalized wave equation
o
In this subsection we shall use an eigenfunction expansion to
N solve the system (1) as, an evolution system in time. Using the
o exponential transformation (2) we can rewrite the system as
o a2 82 82
- ——% =a —52’!- +b —g +dg +bu  in Q
it ax dy
. (47)
L g=0 on 30, g &,y ty)= 9, &,¥), g, &,y¥,t,)= g, ®,¥) ]
- 59
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Here we use general boundary conditions since we want to use the

solution to simulate the response of the membrane system to inputs

Y W v, -

A R

¥
.
]

based on its state at a given time. Our solution s expressed in

he
S terms of an eigenfunction expansion. Let ¢m (x,y) be the

> :*-‘

YW eigenfunctions of the operator in (47) and suppose that the data and

T the control function have the form
S = 2
. (48) «,y,t)) =L r ¢ &,3¥) g K,y,t)=Z v ¢ &,y
go Y 0 mm mn ' I mn ‘mn '
m,n 1 m,n

Yo We look for the solution in the form

e

. ge,y,t) =2 o ()¢ &,¥)

;. e (49) o m,n mn mn
[~ This leada to an eigenvalue problem
- . 24 2
a &=ty li’nuz +ad__ =)\ ¢
- mn mn ' an

L (50) 9x oy

¢m- 0 on i

- ': and an initial value problem

(51) a t) = xm a t) +b u n )

. .

S %n Q) = T ' %mn ©) =Vn
b &

;:; . A simple calculation determines the eigenfunctions

¢ nmx . Yy W
‘ = gi —_ ( ) 1
- (52) cpm x,y) = sin ( T ) sin o oy
- corresponding to the eigenvalues ;:'.7_:;_
- - TN
T - S e
4y - m 2 T 2 gt
L (53) Am =d - [a (’-;T) +b (m?) ] ——
. -":s'_:q
N S
:' it. 60 :;.\7.:
- R
- ASANK
(- T P o
;[ -
}. . L':;.‘:'
e o e e L g e s e A e N I T et
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: The initial value problem has different solution forms depending ﬂ
on the sign of )‘mn « Let to be the initial t'ime and let tf = to + T, ‘
I where T is the sampling period. When )‘m < 0, we have '
v
. b l-cos u_ 72
ot = — @ . m
B %on (tf) L CO8 a.lm'r) + m sin mm'r) + m Uon =
el mn mn n
G (54a) siny T
e ) cmn (tf) - um sin mm'.t‘) + Vm cos um'r) ,+l.m‘m mn
¥on
. When A = = 0, we have
'I‘2
B am(tf)- rnt an'r +bum 5
b (54v) |
SEN d’m (tf) =Vt bum'r
N When ) > 0, we have
S i mn
v
= mn _b_ u chy T)-1
O ®g) =Xy, chb, T + m sh @ T) + m nn on
N mn mn u
AN mn
oo h@u T)
(54¢) . 5% Yon
C ®n (tf) -umrmsh mm'r) Von ch (um'l‘) tbu  —
‘.4 These expressions permit us to solve the membrane system from any
TR -
S initial conditions for any control input satisfying the condition that .
j;: it be constant over the area of the mesh element in Figure 4.1. DR
Lo i
St
. . SO
:‘ -.: p‘\..-*
AR '
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S0
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A o1 et
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N 4.5 Spectral factorization using the Hilbert tranaform

Computation of the optimal stabilizing gain based on the Davis -~
§f Stenger spectral factorization procedure used for the Euler beam

problem proved to bBe infeaaible in treating the two dimensional

5
o system. The computational effort was too high to be practical; and
?2 r, it was necessary to redesign the algorithm to achieve greater
N numerical efficiency. The key idea was to use the Hilbert transform
§ ;% to represent the spectral factors arising in the calculation. This
= permitted the use of fast and efficient numerical Fourier transform
Es techniques in the gain computation algorithm.
L 2; Given a Fourier pair (f£,F) in 12 x12
12N
: - i -isx 1  1sx
: . (55) f(?c) -3z ﬁ‘_e F(s)ds, F(g) = > f_:e f(x)d:_c”
e the Hilbert transform is defined by
1 > fr) 2
- - — J —— dr €L
N (56) B () T - ter
o where the integral is taken in the Cauchy principal value senss.
5{ Given a complex function ?{5
2 Iy
X (57) T(s) = R(s) + iF(s) N
. % ::5?
EE then | i
: RN
bt . N
P (58) HT(w) = HR(w) + iHF( w) e
“ P

C
PRSI
LI AT S A AT
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=

2 o The inverse Fourier transform of HT satisfies » A
B2 AL
: - - R
; (59) F~1 {Hr} = -isgn(t) PT {1} %

g

"l ;.'

" ";: If we define :::‘:’::

\ = .'.\:.‘q

N ' -’.\'.1
= T, = 3 @-iE), T_= 3 (T4mED) i

..': .‘:? ( 60 ) -.:.

& o

a then s

s -

2 ’ - 0 t>0 . Fa 0

o (61) F (1'_'_)- -1 » FTQ) =

&= F @) tec 0 £<C

This means that T+ (respectively T ) is the projection of T onto the

space Li (respectively LE ) with the obvious intepretation of Li and

2
L .

Y
L2

~ l"ii'H i
R4

Now consider a function f(x) satisfying the condition

S |

(62)  limfEx) =1

::- . l x ! -» o0 2

SR if ¢ (x) = £(x) - 1, then ¢ ¢ L . Applying the previous results to
v = the function

.” ...:

I (63)  Yx) = log [£60)]

. - (with the proper choice for the branch of log), then

R (64) £(x) = £¥(x) £~ (x)

- L where f* and f~ are the causal and anti-causal spectral factors,
S 63

%
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respectively. Por instance,

(65)  £7(x) = £(x) exp{-d Hlog £(x)}

This expression is used directly in the computation of the optimal

stabilizing feedback gain by spectral factorization,

4.6 Gain computations

In abstract form the control system (1) takes the form

x () = Ax + Bu

(66) y@&) =Cx , x(O)= %y

.......

The transfer function is

r g
s

LR

(67) G(lw) = CRlw;A) B

AN

where R(iw ;A) is the resolvent operator
(68) RGw;A) = @WI-A)™:
If we compute the spectral factor of I + G*G

(69) F~ (W) F w)= @+e*@ Gw)

then the gain is given by .

[B*K] () = L2 @-aun?

= L. G* UW)CR G ,A) X

(70)
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In the present case the components are

0 1
As b=
(11) ad +b3d +4 ¢,
xx YY

And we shall take

k1 (V]
(72) C= ;ZCLZ 2 1)

0 k2

which allows for weights on both the displacement and the velocity.

The resolvent operator is computed by solving the system

o )l

which leads to the systen

2
aa—-f- +b9—§

5 - (sz-cs) f= (cu-v) -su
Ix” oy

(74)
£f=0 on 92, g=sf-u

The associated transfer function is
— —
k, 99 (i)
(75) Giiw) = '
k2 95 (w)

[ L)
where

65
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+ m2+:|.c ) 9, ==l
Therefore, if we define H(iw) = (I + ¢'¢)(iw ) we obtain

(M) Hiw) =1+ K 0P k2) g (30)

Let the state of the'aystem be defined by

h
(78) x () -E]
t

and let

(79) f] = RUw:A)
g

h
ht
and let g, satisfy the complex PDE (76). Then the stabilizing

feedback gains are given by

h S
- -1 * 2 2.2
B*K n = g[ F ({w) gl _ (fw)K (w) Rl + W K2)

(80)
+ 0K B (10’] -l .
5 gih @

4.7 Software development and control system performance

Fortran code has been developed to implement the control gain
computation (80) using the Hilbert transform representation (65) for
the anti-causal spectral factor of the return matrix. The code
includes the simulation algorithm for the system response to the

control as shown in Figure 4.2. Testing of the code has been carried
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out for a few values of the weights in (72). The results indicate

that the stabilization of the system is significantly enhanced by the

CHINK s+~ i" s e a s MW .2

! control action. Since we take the damping in (1) to be positive, the
: . gystem is stable for small enough bias voltages. Modest values of the
t " control weights (10 on a normalized scale), produce a 20% improvement
! E in tl;e settling time of the system. Extensive testing will require an
' upgrading of the numerical routines in the code to produce faster
solutions of the system.
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cgo = sin (
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o rp=crp=2 sin (—9— x) - {cos ( -9— x,)-cos ( -—9— X, )}/ng‘!r uzg

' ¥

-:‘t , . _ . I\- ~
- cp= (ch (ung yj+1) ch Ung yj)) sh Ung (2-y))/sh (ungZ)

”“ v

r cgnmcyp w cp + cgol

diff2=|cgn-cgol

l" no
i———— cgol=cgn

diff2 < precis

- Figure 4.2 Algorithm for control gain computation and simulation
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Part II:

Effective Parameter Models of Heterogenous Structures




5. Homogenization of Regular Structures

It is now generally accepted that large, low mass lattice
structures, e.g., trusses, are natural for space applications. Their
large sizZe and repetitive infrastructure require special techniques
for structural analysis ¢to cope with the large number of degrees of
freedom. As Noor, Anderson, and Greene (1978) point out, continuum
models provide a simple means for comparing structural characteristics

of lattices with different configurations, and they are effective in

representing macroscopic vibrational modes and structural response due

to temperature and load inputs. Our approach to the construction of
such models is presented in this section. In the next two sections we
consider the problems of control and state estimation in combination
with the construction of continuum models. We shall begin with a few
remarks on related work on continuum models in the recent structural

mechanics literature.

Noor, et. al. (1978) use an energy method to derive a continuum
approximation for trusses with triangular cross sections in which the
modal displacements of the truss are related to a 1linearly varying
displacement field for an equivalent bar. In (Dean and Tauber 1959)
and (Renton 1969), exact analytical expressions for the solutions of
trusses under load were derived using finite difference calculus. By
expressing the difference operators in terms of Taylor's series Renton

(1970) was able to derive continuum approximations to the finite

differerce equations resulting in expreasions for equivalent plate

stiffnesses, for example. In a recent paper Renton (1984) used this BCAEANE
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approach to give equivalent beam properties for trusses, and this N

i li complements the earlier work of Noor, Anderson and Greene (1978) and ?i
L Nayfeh and Hefzy (1978). (See also (Anderson 1981).) o
-, . .'_\‘
- N
e In these papers a continuum model is associated with the original N

. e
ﬁ !F (lattice) structure by averaging the parameters of the lattice over F;

some natural volume (e.g. of a "cell” of the structure) and

in advance. While this approach has an appealing directness and

E ;_ identifying the averaged parameter value (mass density, stress tensor, iﬁ
- etc.) with the corresponding distributed parameter in the continuum %Q
E o model. A specific form for the continuum model is postulated at the gi:
r; . outset of the analysis; e.g., a truss with lattice structure will be Ei
? r approximated by a beam, witﬁ the beam dynamical representation assumed Ef
Ff :

simplicity, it has some problems.

YT
't

N ' First, it is very easy to construct an example in which the

; fg "approximate model" obtained by averaging the parameters over a cell

i ‘ is not a correct approximation to the system behavior. This is done :
E ' in subsection 5.1. Second, the averaging method (averaging the -
EZ j? parameters over space) does not apply in a straightforward way to

E . systems with a random structure, since the appropriate averaging "A:'.
-

-

procedure in this case may not be obvious. Third, the method cannot

S be naturally imbedded in an optimization procedure; and controls and

state estimates based on the averaged model may not be accurate =
'j reflections of controls and state estimates derived in the course of a

unified optimization -~ averaging procedure. The method does not

Nala A AL A
’l,l

[. provide a systematic way of estimating the degree of suboptimality of

L .. controls and state estimates computed from the idealized model.
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In this work we use a totally different technique called
i li homogenization from the mathematical theory of asymptotic analysis to
. approximate the dynamics of structures with a repeating cellular
.o structure. Homogenization produces the distributed model as a

consequence of an asymptotic analysis carried out on a rescaled

E ]
o7
ll 2 N .

version of the physical system model.

Unlike the averaging method, homogenization can be used in

- combination with optimization procedures; and it can yield systematic
; 2; estimates for the degree of suboptimality of controls and estimators
i -:: derived from idealized models. Results to this effect are given in
! d sections 6 and 7. While our results are preliminary, they
: nevertheless demonstrate the feasibility of the method; and they
suggest its potential in the analysis of structures of realistic
i . complexity.
g : In this section, we first give an example illustrating some of
i [; the subtleties of homogenization; then we discuss homogenization for
; o abstract hyperbolic systems; then we illustrate the applications of
’u :; homogenization theory by deriving a diffusion approximation for the
E ;; thermal conductivity of a (random) lattice structure. In the final
'; ;i example we derive a homogeniz?d representation for the dynamics of a
ES - lattice structure undergoing transverse deflections. We show that the
E o behavior of the lattice is well approximated by the Timenshenko beam
; %} equation; and we show that this equation arises naturally as the
?' ) limit of ¢the lattice dynamics when the density of the lattice
i iE structure goes to infinity in a well defined way. The mathematical ;“;m
; - analysis used in the derivations is based on the book (Bensoussan,
1S
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"‘:- - Lions, and Papanicolaou 1978) and the paper (Kunnemann 1983).%
_ ‘ 5.1 A one-dimensional example
N & From (Bensoussan, Lions and Papanicolaou 1978) we have the
& l: following example:
.-:.‘ ) 4 € due
S @ @ W o ) =Em, x e kKoxy)
QR (1)
€ = ut

N u (xo) = 0 u (xl)
- where a(y) is periodic with period Tor a(y)>a >0, and a(x) =

- a(y/e). It is simple to show that

™
B 1 €
e 2 2 du 2
SO (2) lluellHl A O T R IO I
I x
- i € . . !

and so, u ~ +u weakly in the space « Moreover,

e Y
S (3) £ »u@ 82— 10 ae @y
- ¥, o

c and it is natural to suppose that u€ 5> u with the limit defined by
e d ¢ M) Gu6l -t x € g%y

(4) - & dx : o

-
Do =0= ux )’
3 ulxgld 1
This is untrue in general (Bensoussan, Lions and Papanicolaou
s L *We are grateful to Professor George Papanicolaou for bringing
Kunnemann's paper to our attention.
A,
- 73

- -:,,f‘:.p ;.'."J'"." o ',-...'..."' '\.".'.\"\'-s':'.'.'.' ......

" Ta® e %5 % a0 CINE I .t 0 0t
AT RN IL7 . TIN ,..;..,._7 it

. ..
o N




1978, pp. 8-10). The correct limit is given by

(5) - (3 G U0l =60, xebgx,), u lxg) =0mu (x)

(6) am@hHl
_ " In general, M(a) > a; and so, the error is identifying the limit, (4)
“ ~ versus (5), is fundamental.

b The syétem (4) corresponds to averaging the parameter ae(x) over
 wnd
F a natural cell; a procedure similar to that used in (Noor, Anderson

and Greene 1978), (Nayfeh and Hefzy 1978) and (Aswani 1982) to define

continuum models for lattice structures. As (5) shows, the actual
= averaging process can be more subtle than one might expect, even for

simple problems.

L To see how (5) arises, let

(7) £ prma® o) &= u®

Then Ee(x) is bounded in L2 (xo,xl) and it satisfies

(8 - & £ wmtm, xe Koxp

One can show that Ee(x) has a strong limitf (x) in Lz; so

(9 5 e
a

weakly in L2 (xo,xl). But :

.
.
-+
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:'_i; € -
2R (10) &7/a° =5 E
e 80 E:-_-t?_'
“:A r,::'::
s (11) L au(d g G
AL dx a .
- E and since ,E'C:‘-.
s aE _ BS
7 (12) -x=f )
< we have
1: 4 M l -1 g-‘l =f
(13) ~ax UMY !
©
and the limit u®+ u is weak in Hl(xi,x 2) (the Hilbert space with norm
S
.' \b
J - defined by (2)).
N
ﬁ This example illustrates the pitfalls associated with simplistic
;:: . averaging procedures. |
-
X 5.2 Homogenization of Wave Equations
‘_:.' . As shown in Part I of this report, hyperbolic (wave) equations
‘ are the most natural models for the dynamics of flexible structures.
": General techniques for homogenization of wave equations are available
:j: ’ (Bensoussan, Lions and Papanicolaou 1978). The precise form of the
;::: homogenization procedure depends on the scaling of the physical model;
- i.e., the dependence of the system characteristic features on small
.::_' - parsmeters. Since this is a sensitive modeling issue, we shall .-:_ 1
N ':\::'-
['_ discuss it in some detail. It may be necessary to consider several :;'n::f_}
% scalings to determine the one most suitable for a given class of ""-j
5 N
L S
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S
N flexible structures.
S
e ! Consider the Klein-Gordon equation
s u,, €0 (2 6 Tule, 0] -we) ule,x)
Lo (14)
F;] n
ORI u 0,x)=f (x), ut 0,t)=g (x), t>0, x€ R
S where f and g are smooth functions of compact support, cz(x) >0 and
AR W(x) > 0 are smooth. Suppose c(x), W(x), £(x), and g(x) depend on a
small parameter € > O. For example, suppose c¢c and W vary slowly with
N X, 80 we have
2.2
o (15) c“=c” (€ x), W=W (€ x)
jf- and suppose
K (16) £ = £5 g =g©
o Let u be the solution of (14) with (15) (16). The behavior of & as
o € »0 in (14)-(16) is trivial if we consider (t,x) fixed. However, if
c’ (t,x) become large as € +0, then an interesting limiting behavior
f:'{'_v emerges (Bensoussan, Lions and Papanicolaou 1978, Chapter 4).
3 - To see this most clearly, it is necessary to rescale t and x as
- (17) ¢ = et,
- = Dropping the primes, this yields
-’
e € 2 N
o e €002V 00T (6,201 35 W e w0 s
- (18) € S
A € E €,. € s
4 E u (OIX)-f ’ ut( ,x)ﬂg " x e Rn, * >o [ 3
) e
N Notice that in rescaling a system with slowly varying coefficients, :-:.}.2
) .3. ‘:."{J‘
% Y l.'_-‘
o . AL,
. 76 NG
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'.'n }: ot
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one produces a system with a large coefficients.

’ To complete the specification of the problem it is necessary to
I define the dependence .of the data f € and ge on€. The various choices

strongly influence the final form of the limiting system. Following

E (Bensoussan et al. 1978), we shall distinguish three classes of data.
A
-Z_:; Case 1: Low frequency problem
:_f:: In this case £~ and ge have asymptotic power series expansions
S £ ) vE &) +EE &) He..
(= (19) 0
g° &) vy ) +E g Ge) +-.-

) where the terms in the expansion are smooth functions. To produce a
' problem with finite energy as € *0, it is necessary to take f5(x) = 0
in (19). (See (Bensoussan et al. 1978 p. 541).) Since the problem
W~
% is linear, it is not necessary to have the expanaions begin with ez.

The analysis of this problem is comparatively simple, and the

limiting behavior as & +0 is elementary.

Case 2: High frequency wave propagation in a slowly varying medium

In this case the data take the apparently specialized form

e v

£ &) vexpl i Sx) /e] £€ @)
(20) e 1 A
t g x) A T exp ( is &x)/e] ge ¢)
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where S(x) is real-valued and smooth, and'¥€ and'ze are complex-valued
and smooth and have asymptotic expansions like (19). Note that the
data in (20) are complex-valued. Since the problem (18) is 1linear,

both the real and imaginary parts of u are solutions.

To understand the physical significance of the second case,
suppose the "phase function” S(x) = k x, where k is a constant vector
and dot stands for the inner product in R2. In this instance the data
in (20) are spatially modulated plane waves with rapidly varying
phase. As shown in (Bensoussan et al. 1978) virtually all cases of
interest (different scalings leading to nontrivial limiting behavior)
can be analyzed in terms of this case. For instance it is possible to
treat the case of wave propagation in slowly varying media with

spatially localized data or the form

1-n/2 %
£ x) =¢ f(x.'e')

(21)

-n/2 X
Fw = gu, 2

where f and g are smooth functions of compact support in x and y

( x/e), and (x,y) €R2 . The scaling on the right in (21) is chosen

so that the terms are of order one as €* 0. Problems with forcing .

functions and/or inhomogenous boundary conditions can also be treated

by essentially the same method.

The treatment of case 2 given - (Bensoussan et al. 1978) 1is
based on the ideas of geometric opt..s. Thé solution u€® is sought in

the form
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S v x,t) =€ el S (x't)/ev x,t)
s (22)
- ! vo x,t) =y Get) *EV. BE) ¥ ...
3 Inserting (22) into (18) and equating coefficients of equal powers of

W
o P € leads to
3R

A =0

:_- ‘:_: (23) Al Vl + Az Vo = Q
2 Al v, + A2 v, t A, Vo " 0
o where
:;A .::t Al = -cz (Vs )2 + (st)z -w
) m
':' . A--Zis37'(c2Vs)+ic2VS'V-iS
. 2 t t tt
SE (24) )
2 2
) i Aa =V " V) -3 e
SRR
> The analysis of these equations leads to the reduced model for the

E system behavior.
-. . From the first expression in (23) we see that for Yo not to be
.'- -\
\ identically zero we muit have
- -
- = 2 1/2
SR (25) st (e e (Vs)Pewm Va0 i
: TN
o TN
el RGARY
SR This is the eikonal (or Hamilton-Jacobi) equation, a nonlinear first :h;
C order PDE which controls the evolution of the phase function. It may f )
o be solved in terms of a system of nonlinear ODE's (Hamilton's ]
- -.-_\.-_
s equations) for the “"rays”" and "momenta” associated with the ¢,~-’J
P propagation of energy by the system. (See (Bensoussan et al. 1978, S
LR i
Q‘. :‘. -
OO 79
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The choice (25) for the phase makes the operator Al identically
2ero. Using this in the second equation in (3 ) 1leads to the

"transport equation”
(26) A, V=0

Its analysis leads to expressions for the propagation of energy in the

systen.

The case of spatially localized data (21) may be treated using
the same techniques in combination with the method of multiple scales.
We shall not develop the analysis of these general asystems in more
detail. Rather, we shall turn our attention to the comstruction of

continuum models for lattice structures.

5.3 Continuum approximations for lattice structures

In this section we shall apply homogenization and the associated
asymptotic analysis <to derive continuum approximations for two
different types of problems. In the first case we show that the
problem of thermal energy conduction in a lattice can be well
approximated by a diffusion process in the macroscopic scale. In the
second case we show that the in-plane macroscopic (2 dimensional)
motions of a simplified truss model can be well approximated by the

Timoshenko beam system.
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5.3.1 Effective conductivity of a periodic lattice

A. Problem definition

Let 2 = {0,+1,+2,...} and £ = Zx..xZ (d times) be a
d-dimensional lattice. Let € *Q be a number small relative to 1. We
want to describe the effective conduction of thermal energy on the
€ -spaced latticece Zd. Let o = (O,...O,1,O,...O)'I| with 1 in the ith
position, i = 1,2,...,d¢ If x is @ point in Zd, then x + eei,
1 <i<d, are the nearest neighbors of x. Let a (x), x¢€ Zd,

1 <i<d, be the two functions defined on the lattice, and assume

(26a) . =a - d ¢<ic<
ai(x).=ai+(x) a; (x+ei), x€2,1 i 4

<
(26b) 0<a £ a; ) = B<mx€.2d,1=i§d

(26¢)  .a (x) is periodic with period ¢ > 1 in each direction,®

Next let

v

(27) aii (x) = a., (x/€), xeezd, 18 i <4

Equation (26b) means that the conduction process is reversible
and that the conductivity ai (x) is a "bond conductivity”, i.e.,
independent of the direction in which the bond (x,x + ei) is used by
the process.” Equation (27) means that the configuration of bond

conductivities ai+(-) on ef is simply a“_(') on 2° "viewed from a

distance.” Assumption (26c) imposes a regularity condition on the

PR O Do ko :,".'_:. T I3 ?_‘. ’_-. e TR T P PN

*The period may be different in different directions.
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physics of the conduction process. An assumption 1like this is
essential for existence of a limit as € #0Q. In one dimension the
situation is illustrated in Figure 5.1. A system similar to this was

treated by Kunnemann (1983) with random bond conductivities.

E Ergodicity replaced periodicity in (Kunnemann 1983).
a.,_(x)
~_ T® P
b -~ ’./ . ~ .\
\\ -~ ~
-~ P ~
1 ~~ -~ *~
t S~ + A ~ "
| ] 'Y [ % " 2 [ [y -
‘ -4 -3 -2 - ¢ 2 3 4 5
Figure 5.1.a. Conductivity on unscaled lattice with period f=6.
s *
a (‘7)
N PaN ' N
7/ 7
< >7 N PN
7/ ~ N 7 N
. ¢’ N 17 N 7 '
N
\\/ 7/ ~ 7 v
L] i i i 1 " A 1 [] [ 1 A A a 1 L [
. . » =36 -2¢ - € & 2& 3¢ 1€ . .

Fiquré -5,.1,.1)._ Conductivity on ¢-scaled lattice, y = £x, with

x €2 and period €& = 6 .

One can associate with this system a random (jump) process
lxe(t,x), t >0, xe¢ EZG} on the t-spaced lattice*. In effect, as
€ + 0, {X°} converges to a Brownian motion on the lattice; and the

main result of the analysis is an expression for the diffusion matrix

*Definition of this process is not necessary for the analys’i‘s, but it
3 bolsters the intuition.
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Q: = [qi,j; i,jJ = 1,2,4¢.,d] of this process. This matrix describes
the macroscopic diffusion of thermal energy in the system. It is the

effective conductivity.

We shall carry out the asymptotic analysis of this system in the
s C limit as €0 using the theory of homogenization. Let “
SN 3
:‘:: :‘. €= 1 )] . -:‘
T. ol (Vi u) (x):= € [u(x-eei) u(x ,__j
-l (28) (v €+u) (x):= l {u(x+ce, )-u(x)) L:
T i e i Rt
' d R
_;.: x€ez ’ 1 S i S d' 4,'_‘.:_
for any u square summable on Zd or square integrable on Rd with e 3 """,
the ith natural basis vector in R°. Then N
— o) € 4 - o
Y X | g oy & &9, S ie,x0] -
t =1 T i'e’ i 3
(29) . o
NN ce A
RS :=L u (t,x) e
. R
5
C is the diffusion equation on the c-spaced lattice with density u(x) ::
.'}-I - and conductivity ai.(x/e). Our construction of an effective parameter .:'.:‘
A . >
Sty -
L representation of the thermal conduction process as € + 0 will be A
N
- based on an asymptotic analysis of (29) using the methods in -
S (Bensoussan et al. 1978).
O
_~::‘ ,:ﬁ.« Remark: Although we shall not use probablistic methods in the
. analysis, the associated probabilistic problem has a great deal of
E::: a intuitive appeal. The operator L° may be identified as the
:.-:: L, infinitesimal generator of a pure jump process xe(s) in the "slow"
] 3
time scale s: = g2 t; cf. (Breiman 1968). Moreover, L% is
v
e 83
™ C
[}
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selfadjoint on 2% with the inner product

€.9) : =L | (£x)gx).

(30) xez9 o

Hence, the backwards and forwards equations for the process Xe(s) are, &‘

respectively, -

R 3p° (y, t]x) € € | =
h o L2 = (L5 (v, t|)] (x) <
':‘ . (31) g._
= € L
r, - M%é_t_l}-)_ = [LEPS(. ,t|x)] (¥)
* So the process is “symmetric" in the sense of Markov processes -

o

(Breiman 1968).

»,
i

SE The asymptotic analysis of (29), when interpreted in this
F context, means that as the bond lattice is contracted by £ and time is

o sped up by e-? the jump process {Xe(s)} approaches a diffusion

process with diffusion matrix Q. In other words, on the microscopic

FI

scale thermal energy is transmitted through the 1lattice by a Jjump :f
process; but when viewed on a macroscopic scale the energy appears to };
diffuse throughout the lattice. The microscopic physics are described éi
in (Kirkpatrick 1973) and (Kittel 1976). -~
Because the basic problem (29) is "parabolic", we can introduce :;

the probabilistic mechanism and make use of it in the analysis. 1In i_
the "hyperbolic" problems we treat 1later, this device is not QU
available. . .
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B. Asymptotic analysis-homgenization

The essential mathematical step is to show stirong convergence of

l the semigroup of Le, say :
:2 Te(t):sexp(Let) X
N 2 ' . -

(32) -+ T(t):=exp(Lt) ' ' .

l: e+0 ‘ :

and identify the limiting operator

DR d a2
2 id=1 M) X%y :
E r This is accomplished by proving convergence of the resolvents !

\ g
Vo

vy
2 e

€ -1 -
(34) for o >0, -L7 +al T 3 [-Lsa) 1

nand
s

L4

n g

That is, if f is a given function and

M O ¢
e
v v

L o A 4
. .

S

u€ ()= -L5+0) 7 1f f
(35) :
u(-) s=[-L+a] "lg :

Y

IR ¢
Ly

€
then u + u (in some sense).

.

‘- The method of multiple scales developed in (Bensoussan et al.

1978) will be used to prove the limit. Because the conductivities

LR
- ..O.I:l_.

-
g - a (x) in (29) do not depend on time, we may work directly with "
i

rather than the parabolic PDE (3) (cf. (Bensoussan et al. 1978

Remark 1.6, p. 24z). The method of multiple scales is convenient

because it is a systematic way of arriving at the "right answers" -

something which is not always simple in this analysis.
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Following (Bensousaan et al. 1978) and bearing in mind (35), we

consider
(36) (L) (x)=f (x)

with boundary conditions to be specified later. We shall look for ue

j:I.n the form

2 X
(37) u® (x)-uo(x,-’é-)+eu1 (x,%)-re u, (x,E)+...

) d
with the functions ui(x.y) periodic in yege 2 for every j = 0,1,.0¢0

(As it turns out the boundary conditions are somewhat irrelevant to
the construction of "right answers.") To present the computations in a
simple form, it is convenient to introduce y = x/€, to treat x and y

as independent variables, and‘ to replace y by x/c at the end.

+
Recall the operators Vi" from (29). Applied to a smooth

function u = u(x,x/¢), we have

- 1
Wie u) &,y) = E [u (x-eei, Y"ei)-u x,y)]
=1 (ubx,y-e.)-ux,¥))
€ b §
(38) -

1 ma ye
+ < {u&x- e y-ei) ux,y ei)]

2

1 du 1 3% (x,Y"ei) +0(€2)

- -é- (Vi u) &,y)- 'a—xi b‘ly-ei) +€ 2 R—i-z

where on functions ¢= ¢(y)

(39) @[ &) @) =odg-e)-0¢ @
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Defining

k

< (40) (71 g) ) = glyvey) - o)

rf'i-_?:‘

NOA A
= 4
o> vwe also have ﬁ@ﬁ%

n.‘
£ 1 B yre,) 4ol 2%u 2 e
f:,':‘ (41) (vie+“) (Xoy) = -e— (vi u) (XIY)+ axi (x,y i +e—2' 5{2 (x,y-l-ei) + 0(e™)

Now we substitute (37) into (36) and use the rules (39) (40).

RN
‘. B (] ()

Equating coefficients of like powers of €, this leads to a sequence of

SIS
- equations for gy Uisees Specifically, (using the summation
- :::§ convention)
h -
b €4€y - -7 E- €+ €
L @ w7y &,y) Vi la;, @& vi u ]
BN 1 o- +
. - -Lv
21 [ a, &) Y u &,y] S
oo e 3uo A
] Vil O o kavey)) .
— 2 :_ .-"_'..
3% AN
. 1 €~ .
-~ o - =eV [a, &) 0 (0% Lo
A 2 : Yte.) +0 (e) o
R (42) | PO el 1 L
- 1 - +
C “e 'y lan v, u }(x,y)] :
S du o
‘ €- 1 . s
Y =V » =, G yt+e; )] +0 €5 T
- - NOCE
.. - + )
0 -Vi [ai @) Vi uz (x:Y)] +O (E) - f (x) -_'T f'-
- That is, labelling each term by its order in e '
) et e
= u

-\ ° - J - +
(44) (e 1) eVie [a, (¥) 371 (x.y+ei)]+Vi [ai(Y)Vi “l(er)]' 0

and (recall eVit N 0(1) ine)
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1_g €= )
2V law 3%,2 &oyte;)]

0 €= aul
(45) € -V, [aiw)-sg & y+e,)]

- +
-Vi [ai W) VJ. “2 x,y)1 = £ (x)

FProm (43) we have

a, (y-ei) lu, (x,y) - uo(x,y-oi)]' )

(46)
-a; (y) [ug (x,y+e,) - Y, x,y)] =0

If we take uo(x,y) = uo(x), this is trivially true. (We must justify
this choice in subsequent steps.) And (44) simplifies to
(47) v e'[a ( ) i& (x)] + v -[a. (y) V+ ﬂl(XIy)] = 0

i Y o i i i
At this point we invoke a standard device in homogenization asymptotic

analysis, namely, the use of “"correctors.” We assume

d du ~
0
@8) u (x,y) = z xk(y) = ul(x)
k=1 k

with xk(') the correctors. Using this in (47), we have (agair

using the summation convention)

Buo Buo

- + =
(49) Vi 2@ Ty W] g Ha e da Wl g =0

If we take xk(y) as the solution of
(50) v, 7la, (y) V] X, )] + [a, (y-ey) -ay (y)1=0

(we have to verify the well-posedness of (50)), then (49) is

satisfied. (The term ti(x) is determined (formally) from the O(E)

.................

. v

¢
e

v

....
o ¢ 0 c_’c:c
Jolo o,

APV
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: i term in the system (37) (42).)
:
p Regarding the well-posedness of (50), note that
OERALTCAARTI R ER N
a ‘ has a periodic solution on€ Zd which is wunique up to an additive L

"\ constant if the average of the function¥ (y) over a period (ef) is

. L gero; 1i.e.,

Mo

= 1 - =1,2;...,4
(s2) ¥ . 1 ‘l’(y+ken) 0 n=1

w

o §

4 .ré This condition clearly holds in (50), and so, xk(y) is well defined
o (up to an additive constant).
N g We shall determine the equation for uo(x) by using (48) (50) in
v
. (45). Using the Kronecker de_}:a function §,,, we have
1 €~ ]
7€V [a;8 6,0 —0-
Bxiax
k
€757 [a, @)X, Wte,)] a%u =£ (x)
i i k i Bx.axk
K (53) i 4%
m *., - l - g~ -+ hais §
: (37 tag 8,0 V.7 (a, &) 7,7 x. 1} 9%,
Do V- 2% - -
. o~ Vi L2, &) %, )] e A VA AR I |
The term in braces ia zero from (50). To obiain the solvability
-
. condition (52) for u, in (53), we introduce the average
i .
(54) 7%x ™ symmetric part [ { -V:L (ai ) X @ 1}
S ,
';C Then solvability of (53) for u , 8ives the equation
e .
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a 3%,

1
- (55) 5 & q o .
2 i,kmg ik 3::15xk £

And this is the diffusion equation which defines the limiting behavior

of the system (36) in the macroscopic x-scale in the limit as€V0 .

. We can justify the asymptotic analysis by using energy estimates
or probabilistic methods as in (Bensoussan et al. 1978). (See also

R Kunnemann 1983).) We shall omit this analysis here.

:. C. Summary

N

[ Returning to the original problem (30) for the evolution of

thermal energy on a microscoi)ic scale, we have shown that the thermal

density ue(t,x)*~u° (t,x) as et O (in an appropriate norm) where

9

(s6) Mo _1 Y
o z ¢ Yy
',.' it i,3=1 Bxiaxj
l with
1, s, 0%, )

- =-2 I V. [a, @)X
q, . k
o (s51) 13 g PR
W, ey )Xy 1)

=
- and the correctors X, k = 1’2,...,d, are given by
a _ . . o) —a )]
T v, ta, ) VX 91 la, §-c) -2, &

(58) i=1
. k= 1,2,...,d

To compute the limiting "homogenized" model (56), onme must solve the

system (58) (numerically) and then evaluate the average (57).
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The fact that the original problem (30) is "parabolic” (i.e., it
describes a jump random process), enables us to exploit the associated
probabilistic structure to an£icipate and structure the analysis. In

“this way we can anticipate- th;t“the limit problem will involve a
diffusion process. In fact, the arguments used are entirely
analytical® and the 1limiting diffusion (56) is constructed in a

systematic way. It is not postulated.
5.3.2. Continuum Model for a Simple Structural Mechanical System
A. Problem definition

Consider the truss shown in Figure 5.2 (undergoing an exaggerated

deformation)

Pigure 5.2. Deformed truss with triangular cross-section.

*Probabilistic arguments can be used (Bensoussan et al. 1978, Chapter 3); X
and they have some advantages. e

N '{,I.‘l. [ #C
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We shall assume that the truss has a regular (e.g., triangular)
crosa-section and no "interlacing"™ supports. We assume that the
displacements of the system are "small” in the sense that no
components in the system buckle. We are interested in describing the
dynamical behavior of the system when the number of cells (a unit
between two (triangular) cross sections) is large; that is, in the

limit as

(59) g:= /L + O

¥e shall make several assumptions to simplify the analysis.
First, we shall assume that the triangular sections are essentially
rigid, and that all mobility of the system derives from the
flexibility of the members connecting the triangular components.
Second, we shall ignore damping and frictional effects in the system.
Third, we shall confine attention to small transverse displacements
n(t,x) and small in plane rotations ¢(t,x) as indicated in Figure 5.2.
We shall ignore longitudinal and out of plane motions and torsional
twisting. Fourth, we shall assume that the mass of the triangular

cross members dominates the mass of the interconnecting links.

Systems of this type have been considered in several papers
including (Noor et al. 1978) (Nayfeh and Hefzy 1978) (Anderson 1981)
and (Renton 1984). In those  papers a continuum beam model was
hypothesized and effective values for the continuum system parameters
were computed by averaging the associated parameters of the discrete
system over appropriate cell volumes or areas. Our approach to the

problem is based on homogenization-asymptotic analysis and is quite
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different from the methods used in these papers.

The assumptions made above simplify the problem substantially.
By assuming the cross sectional components to be rigid and ignoring
out of plane, longitudinal and torsional motions, we have effectively
eliminated <the geometric structure of the truss. We can retain this
structure by writing dynamical equations for the nodal displacements
of the truss members. For triangular cross sections nine parameters
deacribe the diaplacements of each sectional element. The analysis
which follows may be carried over to this case, but the algebraic
complexity prevents a clear presentation of the main ideas. As
suggested in (Noor et al. 1978) one would need a symbolic
manipulation program like MACSYMA to carry out the complete details of

the calculations. We shall take up this problem on another occasion;

“for now we shall treat the highly simplified problem which, as we

shall see, leads to the one dimensional Timoshenko beam (and from
there, under certain constraints on the parametera, to the Rayleigh

and Euler beam models).

We shall begin by reformulating the system in terms of a discrete

element model as suggested in (Crandal et al. 1980); see Figure 5.3.

In this model we follow the displacement ni( t) and rotation ¢ 1( t)
of the ith mass M. The bending springs (EL ) tend to keep the system
straight by keeping the masses parallel and the shearing (k:) tend to
keep the masses perpendicular to the connecting links. We asaume

small displacements and rotations so the approximations
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Ficure 5.3 A lunped parameter model of the sinplified truss system.

sin ¢i t) = ¢i (t)

(60) L
tan M, (t) L= n t) /%

are valid.

In this case the (approximate) equations of motion of the ith

mass are
o n,, ,& -n,
R S £ i+l i®)
¢i t) - ks {t T 1~ ¢i (t)}
(61a) - . V¢J.+l ®) _¢i )
Sq {Kb ( . 1}

(The spring constants depend on i since they represent the restorative

forces of flexed bars, bend by different amounts.)
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n, (t)-n, _, (t)
- - i i 5.2
(61D) n () = s) { kL i 1 - ¢,(8))

where we have normalized m = 1 and defined

15
o
(62) sy n, =% (n,_. -n,]

Fq 2747 2 M-l i
* o and similarly for S'¢i. (We shall omit treaciex. of the boundary
i conditions at the ends of the system.)
t To proceed, we shall introduce the nondimensional variable € = /L
j.u o and rewrite the system (61) as
i: r
::'.j e 21 i g€+ € _ € £+ ie-, ¢
2 wh, (€)= TRV TE) - p TRl) VT RV Bie)
o (63) -
- €= €+
L np(e) = -V (K V0 (8) - 6, (6)] )

where

. . i
E KS ks L, K b = )% L
. = (64) €+ £- 1
-: v T)i = € (ni+1 - ni)' v ni = z (ni-ni—l)

Next we associate a position in the system xiC[-1/2, 1/2]

b (normalizing L = 1) with each mass; and we introduce the notation
(65) n(t,x) =n (£), dlt,x) = ¢, (¢)

- Having normalized L = 1, we have ¢ =@ and ™5 + 2 = x, + €.

Let ’% = {xi} be the set of all points in the system. In this notation
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3 +
3 @) (£,x) = 2 (e xee) - nie,x0]
(66) L
0 (VE7M) (£,%) = = [n(e,x) = nit.x-e)], xe ¥
X and the system is
+€ - e+ € _ €
I o (t,x) = K (x ){V N7 (t,x;) - ¢ (L)}
€+ £-.€

. .(67) +eV K (x)V ¢ _(t.xi)}
- [
) ‘e €~ €+ € €
) noex) = =V K (x )V nT(E,x) - 47 (%) 1)
.. The scaling of (67) may be interpreted in the following way:
-2
e Formally, at least, the right sides of both terms in (67) are 0(€ *).
- This implies that the time variations are taking place in the "fast
) time scale” T = t/e. Also, the spatial variations are taking place in
. the microscopic scale"” x which varies in €-increments (e.g., Xy =%

+¢ ). Introducing the macroscopic scale z = €x, and the slow time

scale ¢ 'E"\l" , we may rescale (67) and observe its dynamical evolution
l . on the large space-time scale on which macroscopic events (e.g.,

"distributed phenomena") take place.
g Rewritten in this spatial scale, the system becomes
et 2,e, 24
e a‘¢e (t,1) z Z,.
: e lyx by (Ffe, D

2 € s € €
dat
:-:. (683) zi
1 e+ % e- €e zi)
;.. + Ez 6 {rl% (E_)G ¢ le
z,
e dzﬂe €, =) z z, z
L (6ab) = 3, 65k, (2 6% et - e0f @, )
at e s ‘€ € €
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::: where %
AN et et .
- (69) &6 =¢€V =0(1) inc€ =
_7:' T The essential mathematical problem is to analyze the solutions _4
b o ¥®, nfof (68) in the limit as e40. s
:-'-jj B. Mathematical analysis o
To proceed, we shall generalize the problem (68) slightly by ;TZ:_

allowing Ks and Kb to depend on z.as well as z/e. This permits the

WL restoring forces in the model system to depend on the large scale :"

- shape of the structure as well as on local deformations. We use the
) method of multiple scales; that is, we look for solutions of (10) in _':_."-

-~ E the form :

Tle(t) = ne(t.z,y) y=z/¢

SN 70
o (10)  4&¢e) = ¢%(t,2,y)

n

Z‘_:’j and we have s
-:': ~‘ - = z/c
= (M) X, =K (29, K =K@y, v z/ ¥
- & =
.::‘ .l +
- On smooth functions w(zr:- ) the operators &k satisfy e
G GEF ¥ (zy) =y @re,yrl) Y@y X

Iy
:::j :::; =y (z,y+1) - Y (z,y) + § (z+e, y+1) - ¥ (z,y+1) :;:
A (72a) 2,2
= 5" ey re B ey 3 E2E e 406D %
N z 2 42 3
- E ":
- *.
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B !‘.\. ‘\T
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@ 65V ) = ¥y - Y Eeyel)
N "'\\'
i (120) =y - Vey-D) +bEyl) bE-ey
N 2 3
- - 3 1 230 (5,4-1) +0 €™
. ' = 8V (2,3 -e% z,y-1) + 3 € azz 2.y
2 X
- T We assume that we, n® may be represented as
€ €
' p- ,z,y) = wo t,z) + ewl t,z,y) +...
(73)
n® @,z.y) =y £,2) +en &z, +..
and substituting (73) in (68) and using (71) (72), we arrive at a
:: : sequence of equations for ( Vg Ny ) @Pl, nl),... by equating the
: r_ coefficients of like powers of €.
k; . Starting with s-% s-l, eo, ese, We have
1+ -
“B (74) =, SIr K@,y S ¥ (2} =0
e 0
which is trivially true from (72b) (73). The same term for (68b) is
C trivially satisfied by the assumption (73). Continuing
( )l[S*'{rK @,y) S~ v, t,z,} + K @y {s™h @,2) -v. @&,z }=0
S ) € b 1 CrEY s =¥ (e o '
—~ &= _
N which may be solved by using the corrector x¢(z,y) and taking
‘C. :::_ (76) ‘Pl t,z,y) = X¢ (z,y) ‘Po &,2)

with

+ -
m S { rxcb (z,y) s X¢ (z,y)} = K (z,y)

CR T
r’ ."l .I...l'v .' ..

" R
B! If we regard z as a parameter in (77), then there exists a solution SO
3 g
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Xy * unigue up to an additive constant, if K (s,°), K (3,°) are

periodic in y, if there exist constants A,B so that
(78) O<A<Ky (z,y) SB<®

and if the average of gsﬁz,-) is zero

(19) § /M2 x, e a0

which holds if the system is pinned at the ends as indicated in Figure

5.3. Let us assume that (78) (79) hold, and
(80) O0<A<K @,y <B<®™
(vwhich we shall need shortly).

Considering (68b), the Of €™ )) term in the asymptotic expansion is

@) L08 {x (zy) 'y (k29 ¥ (t,2))}] =0

Again we introduce the corrector xn(z,y), and take nl in the form

(82) n:

1 A(tlz'Y) - Xn (z,y) Wllo t.z)

which gives the equation for the corrector
- +

(83) & {K (z,y) [SX, (z.y) -11} =0

or

(84) S (K (z.y) s+xn(z.y)} = K_(z,y) -K (z,y-1)

By hypothesis the right side in (84) is periodic in y and has zero
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average (79). Hence, (84) has & periodic solution, unique to an

additive constant.

Continuing, the 0(c®) term in (68a) is
s* {r x ey sV, &z}

;K (2,y) [s‘; n, &2, ¥, &,2,9)]
an

K, y) 5o k2

+st (z K (@) %; ¥, t,z,y)}

(85) wst e K, @) .3__2 Yo t.,2)}

: {f 9z )
- 9 )
’ +—{r K, z,y+1)} — Yo t,2)
}:. ':._ dz 9z 2
‘i r 82 Q wO 0
- . g €,2) - —5 =
+ 2 { r ]%(z,y-fl)} ‘Po 31:2

0z

ey
P4

This should be regarded as an equation for wz as a function of y with
(t,z) as parameters. In this sense the solvability condition is as
before, the average of the sum of all terms on the left in (85),
except the first, should be zero. We must choose wo 80 that this in

fact occurs; and that defines the limiting system.

Using the correctors (76) (82), we must have

2%y a2y
Average 0 0 + + ,
e (52 - st @t eK Gy X, @) ]
t 3z
1Y ano
66) - Tl &% @Y - K @y
;i * * @) 2= X, @)
2N Sy 1, K EyH)) + ST E K @) 5o X, By
:1: dz
S .
E + K, (z,y) 6 X, @y - xw(z.y))} =0
: re Defining the functions EI(z), G(z) by the associated averages in (86),




%
- the averaged equation is ‘
- . ) 1] on %
'_'\ o a o _0. - q.-‘-,, !
: (e — = w® w )t m "o %
{‘ ’_-‘ . 31: :'3'?:"
ne N . oz
e T "
o which is the angular component of the Timoshenko beam system (Crandall :‘d
NN ot al. 1980 p. 348). .
Arguing in a similar fashion, we can derive the equation for the _‘_
5 displacement no(t,z) in the Timoshenko beam system -Lj.'—fj
': - 2 . e
- 3°n an
i (88) 0 3 o _
YR — = 3 (N &) (57— Yo t,z)) ] o
; * B
o C. Summary f :
- i . Ve have shown that a simplified model of the dynamica of the C
N truss with rigid cross sectional area may be well approximated by the T
NER Tl
A Timoshenko beam model in the 1limit as the number of cells (VL/R) i
i E becomes large. The continuum beam model emerges naturally in the :
.::', analysis, as a consequence of the periodicity and the scaling. ;Zi:z
. 1o
- Pos
'.l , '..-
o To compute the approximate continuum model, one must solve (77) r"’
‘: and (84) (numerically) for the correctors and then compute the =
'::.‘f parameters in (87) (88) by numerically averaging the quantities in
N j::? (86) (and its analog for (68b)) which involve the correctors and the o
'l_u
. data of the problem. >
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6. Homogenisation and Optimal Stochastic Control

In this section and the next we show that the process of deriving
effective “continuum" approximations to complex systems may be
developed in the contoit of optimal control and state estimation
designs for those systems. This procedure is more effective than the
procedure of first deriving homogeneous/continuum approximations for
the structure, designing a control or signal processing algorithm for
the idealiihd model, and then adapting the algorithm to the physical
model. In fact, separation of optimization and asymptotic analysia
can lead to incorrect algorithms or approximations, particularly in
control problems where nonlinear analysis (e.g., of the Bellman
dynamic programming equation) is required. The problems treated here
and in the following section are abstract systems which illustrate the
basic techniques. At the beginning of section 7 we shall present a
simple argument which shows how the class of models treated here might
arise. In subsequent work we shall apply the combined homogenization
- optimization procedure described here to the problem of controlling
the dynamics of lattice structures like the truss structure analyzed
in the previous section.

6.1 A Prototype Problem

The interaction of homogenization and stochastic control was
discussed briefly in the book (Bensoussan, Lions and Paponicolaou
1978), and in (Bensoussan 1979) and (Blankenship 1979). The recent
paper (Bensoussan, Boccardo and Murat 1984)* provides the first
systematic analyais of an abstract control prodblem involving

homogenization. We shall briefly summarize its main results against
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the background of the lattice system discussed in section 5.

The problem is to control x (t) given by

€ 1 ¢

c 1
axfalg (xe,-:-xe,v) +%b(xe,Exe)] at + o6, 255 aw @

(1)
€
x ) =x, 0<t
with xe(t) defined in a bounded domain OC R with smooth boundary.
Here g, b, and ¢ are smooth functions of their arguments, w(t) is a
standard R" - valued Wiener process, v ia the control and €> 0 is a
parameter. We assume that g, b, and ¢ are periodic in their second

argument with period one on the unit torus Y in R .

Let T be the first exit time of xF(t) from the domain O. The
cost function is
€ 1 <

( IOTS LS, ¢ xE,v) exp 5 e ( <%, £ vas)

€

€

and we define

uE(x) = inf ai (v(*))

vi{)

(3)

We assume that the cost rate L(x,y,v) is periodic in y on the torus,
and has linear growth in v. The discount factor c¢(x,y,v) is uniformly
bounded, positive, and periodic in y. The set of admiassible controls

U _gconsists of feedback functions v(+)

1 e
(4) vy =¢F & ®, gx ©),8

® We are grateful to Professor A. Bensoussan for transmitting a
preprint of this paper to us.
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(We shall justify this presumed structure for the control law in more
detail later.) The system has highly oscillatory coefficients; and,
as in section 5, one would expect the solutions of the control problem
to be well approximated by the corresponding control problem with

g(x,y,v), b(x,y), o(x,y), L(x,y,v), and c(x,y,v) replaced by their

averages (appropriately defined) over y. This is not precisely the

case and one must carry through a complete asymptotic analysis to

determine the exact nature of the limit and the approximation. s

o
In (Bensoussan, Boccardo, and Murat 1984) this analysis was j?;;f

carried out in terms of the Hamilton-Jacobi-Bellman (HJB) equation for :;iﬁ

- A
the optimal cost,® . e

: € € _ 1 € € € :ﬁ?i
(5) A"u = H (x, g X, U, Du ), u ,F 0 {i:;

i Y .
s (6) a*=-a,. kD) f=—m— -=b, &I T ]

: ij € Bxiaxj € i £ Sxi

R 1, T e
where a 1357 2 (o0”) 14 and o
g 7 H( x,y,q,p) = inf {L (x,y,v) + p'g (x,7,v) =4 ¢€ (x,¥y,v)} PP

ST v —l

Notice that the Hamiltonian H is periodic in y. The objective of the

,‘ii (R ToN

analysis is to determine the limit

. . B :'1

M u(x) = lim u® (x) l'.:-:‘:{

P (8) €+0 T

Do - AR

3 L * Here and in the following we use the summation convention that -

i) ) repeated indices ij are summed over their full range. }:}}
20N
n‘. -
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w ‘to identify u(x) as the solution to a HJB equation, and through this
i to associate a "limiting stochastic optimal control problem” with the
original problem. The method is “"homogenization” of the nonlinear
partial differential equation (5). To accomplish this, it is
necessary to impose further regularity and growth conditions on the

e coefficients in (5)-(7).

Assunme Uad is a nonempty subset of a compact metric space U; and

o_n
(9) Lix,y,v) : Rn xR x Uad R

is continuous, periodic in y, and

- 2
: (10) m |v|2 -m <L &y,») Sk (2+[v["), m>0, m >0
l Also,
e g(x,y,v): Rnx Rn XU -pRn
(11) ad
l o(x,y,v): R R x U +R1¥XN
ad
-'-',' are periodic in y, continuous in their other arguments, and satisfy
l:- -
- lg] < g (1+]v])
(12) )
0<c<c<c
o Under these assumptions standard selection theorems guarantee the
' “
existence of a control law v(x,y,q,p) achieving the infimum in (7) and
t for any q,p fixed
. R
".f .\\,.. '~.,‘
:‘J '-.:‘\;..‘
- '\ n\ ‘-~
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X as) | v wvaml < e lple /T

‘ | Hix,y,q.p)| < cC 14 el 24+ |ah

- Moreover,

R s S S TN
»

: = H( x,7,2,0 < ¢ ( 1+ |v]?- a8, a >0
Y (14)
- H(X:Yoq.O) _>_ "cl + qc"qev q i (]
I for some non-negative constants c, °1 and some arbitrary ve Uad .
. Also, .
i A
b H(x,y,d,p)- H(x,y,s,t) < (p-t) *° «q (x,¥,9(x,y,9,pP))
(15)  -(q-s) c(x,y.%(x,y,q,P))

<c| p-t | s+ |p|'+\, lal)+cla-s]

E:j : and a similar condition holds with the roles of (q,p) and (s,t)
= reversed. These growth conditions suffice for the asymptotic analysis
hc ot (5). .
o 6.2 Invariant Measures and Correctors .'.-',-:.-'.'-
?— - Consider the second order operator
HA 2
h.': ‘.-: a - b (x y) _3__
s (16) A= A= a5 00y Jygy, TP UV By
. S
- BOR
v ::._\:..
A and its formal adjoint RN
-. ) '.'-;'.7\
‘ 2 ( (x,y) 3+ L - 2 a,, ] e
7 R R T 5
A B
- . :;-'
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RS Por any x fixed let m(x,y) be the solution of

! ® . .
¢ A m=0, m(x,y) periodic in y o
_ .. (18) NG
RS m >0, / mix,y)dy =1 S0
P ¥ o
'i & 2,p e
o with m regular (in W'~ , 2 < p <*®). Since x is restricted to a K
i compact subset, we may assume
| (19) 0<m<mlxy) <@ e
;32 . E
for some constants m and m. Thus, m(x,y) defines a probability RO
R measure on Y for each x, which we call the invariant measure
L
associated with A. T
S
A key assumption in the method is that the drift term b(x,y) in ,'.'_:L:j:
I i (1) is "centered” in the sense
.-' . ::_: :.
f i (20) fy m(x,y) b(x,y) dy =0 gi;
.’: o r:':":'
. : If this assumption fails, then the asymptotic analysis takes a very
different form from what follows, and the results (i.e., the limits) E:::::'
::: have a totally different character. \
¥ o
SN The centering hypothesis and the regularity assumptions mean that .
e, 7 :f.-
s the "correctors” defined by o
[ i [ Sl
.' - Ax X (x'Y) = "bi (le) , i=1,2,..., n -:._;\
5o (1) i R
0 Y * X (x,y) periodic, J‘Y Xg (x,y) dy =0 o

'(‘n‘"
o 2

=i
hi3
s

exist and are smooth (i.e., they are 02 functions). These functions
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g . play a key role in the homogenization procedure (Bensoussan, Lions and :

i ‘ Papanicolaou 1978) in defining the limiting system. Solution of the i
[

' system (21) is the key numerical problem in applying the J:::;:

- homogenization technique. ﬁ'_cjl:;j

.:. - :':':':

b, ;‘L.‘:

. RE
NN 6.3 Identification and Interpretation of the Limit Problem ]
::f Using the invariant measure and the correctors, we define ?‘E':'_
I ;t:r:;:]
. . - j =

. Q13 (x) = IY m(x,y) [ai_j (x,¥) a gx =]
= (22) Yk

-a, 9 i 1 3 i
3k sék— 3 By X+bx) ey

] 3 i '
rj(") = "5x_i'fy m(x,y) [ aij (x,y) -aik%yk— ldy

R - du du
(23) aw Qi x.ox, 3 ) 3%,
e i3 i

= (24) H (x,q,p) =/ m(x,y) H(x,y,q (I-DX)p) dy,
Y

. ~ k
(Dx ) =X
PI oy, Px

TN .
.--“‘
h
RS
st
‘. I. - -
"
er—p
[oaree
RN
RS
R
AR
)
SN
-n. -

i)

s

Using the definition (21) of the correctors, we can rewrite

R

L It SO NA
!

Qij(x) as

LT
PP
PR
. "
CR

*
’

. . - b . e
Tt
et
RO
AR

»
t yvy

3 i i i
. (x) = x . ) e 2 3
(25) Q5 () =/ mix,y) lag ¥, 5 By +ark§}%_ 3;%

£
b<
-,
—ad

)l BRANIALY
Lo

*

e

DA

>, .,

G .
b.'

108

o o
o A v
.

C

A A
R OGS L X 2

....................... N AT
A

LR
..c.\ Ca WA



2o A o R A AN R S s A

~
Al
-

By
NS

f .- :. . .l" l" .l.' I.. l..‘l- .-' l“ - ".“

l.'
ot

-

I e 4
)

+ F oy s -
- Sl '
Seate th S Mt

v w v v, -
Y s a7
el Tt f e

%4 IE

2o

3
&

S SR
L R

R
L.

..y
et

e € qu .

‘I .l \ ‘.

;

E

A

A
L ot ]
A

LA
.

k.

which is uniformly positive definite. This with the other assumptions
means that

Au=H (x,uDu) , u =0
(26) = = Ir

has a unique solution in w 2P

¢+ PE [2, =)

Equation (26) defines the "limiting control problem” associated
with (1) - (4).
THEOREM (Bensoussan, Boccardo and Murat 1984) Under the assumptions of

regularity and nondegeneracy of aij (x,¥)
€

(27)  u =+ u weakly in w*'P,

for some po\‘> 2.

The function H in (24) may be rewritten as

H (x,q,p) = inf { f mix,y) [L (x,y,v(y))
3 i
+ 0 (g, xyy.viy)) - 5% 9 (x,y,v(y¥))

(28) -9 ¥ ,v@))] dy}

5 inf { T (x,v(*)) +p* g (xv ()

()
v -a ¢ (x,v (*))}

109

A :{ ':‘ .;‘_';'

.|
4% b
7,
AP

» .
o.'

h L)
bl




L YIC AN N P Mgt Mt oa i Wi i e NP A e 40 A LS4 A" B AT S B S i SN A A gl e i i N P e S

----- B A

where v{+) is any Borel function on Y with values in Uad‘ From the

final expression it is clear that H is the Hamiltonian of a control

problem.

Using (22) (23) and (28), we can identify this problem explicitly

as

(29a) u(x) =inf J_ (v (*))
v(e)

g ) = TV (x(t), v(t
x CON =k UTE v(e))

(291)
tn
.exp (-fo ¢ (x,(s), w(s)) ds) dt)

n, .
dx=[g (), vit) +r & (t))]dt

(29¢) +N20 x (£)) aw (t)

x 0)=x, 0 <t

with T, the first exit time of the (controlled) process x(t) from the

compact domain O.

A key property of the 1limiting control problem is <that the

admissible control laws depend on y, the "rapidly varying state
variable", as may be seen from (28). Thus, the "fine structure” of
the original problem (1) -~ (4), that is, the periodic dependence of
controls on ye(t) - xe(t)/E‘, is retained in the limiting problem. In

effect, the limiting optimal control law depends on the fine structure

~ property which may not be desireable in some engineering

implementations.




Notice that the limiting state dynamics (29c) emerge naturally C;;;
from the asymptotic anelysis (see Bensoussan, Boccardo and Murat ;Lg
ko

1984 for details) of the nonlinear HJB system (5) - (7). Note N

further that simply averaging the functions g, b, 0 , L, ¢ with ;}E'

respect to y, and then posing an optimal control problem in terms of bla
¢

the averaged (y independent) functions leads to wrong answers for two

reasons. First, the appropriate averaging process involves the

invariant measure and the correctors, and the role of the latter is o

k..
not obvious in a naive application of averaging methods. Second, as ;}}
(29) shows, the optimal control 1law that emerges in the limiting i%ﬁ
process depends on y, which cannot be the case when +the averaging tf;

process is separated from the optimization process.

The key numerical problems in applying the homogenization -

bptimization procedure to a specific problem, e.g., control of the

a

F

T

s

lattice structure described in section 5, are

PR

)
.
re
’

i e i ]

1. solvinug for the invariant measure (18),

i? o 2. verifying the centering hypothesis (20), solving for the %ﬁ%
-, ' correctors (21), o
:ﬁz - 3. computing the averaged quantities (22) - (24), and S
SIS N
p *, [ R
N 4. solving the limiting control problem (26) - (29). v o
-:~: W
o) Sequential solutions of these problems constitute algorithma for fﬁé
- simultaneous homogenization and control. $f\

ste

Lo £
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= 6.4 Application: Homogenization - optimisation

'X ‘ of lattice structures
e --‘.‘-:j

N . 7...:'.'-3'4

A e
W To illustrate the techniques of the 1last sections, we shall NN
l: reconsider the model for the lattice structure analyzed in subsection b=
a 5.3.2 with control actuators added. The truss shown in Figure 5.3 is '_:

again constrained to move in the plane and torsional motion is f:',:'i ;
excluded to simplify the model and confine attention to the basic 'g__ ,i

- - ideas. Now, however, we include a finite number of actuators acting -ﬁ::{:_'-:

. to cause transverse motions. The truss with actuator forces indicated

r .

3 by arrows is shown in Figure 6.1. The corresponding discrete element

b model is shown in Figure 6.2.

‘ . Suppose that the physical actuators act along the local normal to

. the truss midline as shown in the figures, and that the forces are : .:j:::';
. . LAY
small so that linear approximations to transcendental functions (e.s., :-::’:_-:::
c sin wi&l llli , etc.) are valid. Then the controlled equations of motion !"""1'

of the discrete element system are (recall equation (5.63))

- c‘.

KRN o€ L1 €+ € € e+ i ce-.€

v ( )xwi(t) r1<:[v Ny ®) -y @) )AL K Ve )]

S 30) . m ,

2 nS @ = (S @) -9 @1 4D 8 Gl u, @)

v i s i i j=1 3 J

. :::j

N

“

~ -~

: E where the notation in (5.64) has been used,

2

“' ::.

e
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(1) 1 i3 2

j:f-_ and :j y J=1,¢0.,m are the locations of the actuators. Hence, if -
“:_ ::: 5(i,ij) = 0 for all j=i,...,m there is no actuator located at the ith f::f
. . .:-'.

point which correponds to the physical point xie [O,L]. The number m SA

of actuators is given at the outset and does not, of course, vary with

. ¥, I' i L)
1

1 g the scaling.
. K
The control problem is to select the actuator forces as functions v
of the displacements and velocities of components of the structure to
: damp out motions of the structure. Measurements would typically bde
. r available from a finite number of sensors located along the structure. :m
We shall not elaborate on this component of the model, and shall
: instead assume that the entire state can be measured. To achieve the
i: atabilization, we shall associate a cost functional with the system :
(30). Let

C (32) uit) '[ul(t),....,um(t)] o

be the vector of control forces, and

N .

Y “wi = ® € 2 € 2 € 2 .
. g7 [ u ()] o 3L, { a; (¥ ®1% +b, [ n, ®@1%+aly . ©1 —
o (33) n o
8,005 ©17+2 s4,10 w2 mretat o

. i . 3 j
'.‘. J-l . : .-'_‘.7
- where (ai:,bi) and (ai, Bi) are non-negative weignts. Formally, the ._.
control problem is to select 6(:!.,:!.j )u.j(t), i=1,e00,N, j=1,..0,m to e

. achieve .
(.
(34)  inf 3¥ {u(*)) o

u () )

=

N A et e At e e At e s e
e \-' ‘v.- '-'.‘-' A ‘-'.'1". f\’.'f_'v" o ‘I.. o, "o .ot SOOI -'.o
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subject to (30) (31) and the appropriate boundary conditions. The
' case Y+ 0O corresponds to stabilization by feedback. .......
: -
o The analysis of this control problem is based on the scaling used ~::'.‘
-~ CATS
~" AT A
R in section 5, equations (5.63) - (5.69). Let T = t/€ be the fast el
s
l: time scale, then L.
Y © ’_‘ NnNE N 2 Nve A2
Jtue)) = Sooel {al v, @ 1%+, [0/ @]
j=1 i i i .o
(35) , : _ —
2., n - -
+a V5 M2t N @i 86,1 [y @ 121757 ar o

=1

with ?Bi (n-z'wj (€7 ,ote.

Let (v, ‘L, n .7.1 ) be the state vector of the system (30) with

v=[¥,..,¥] end similarly for the other terms.  Let S

. € . O .'~.
. veve'Y(y,¥, n,n) be the optimal value function for the problem i
| -
(30) (35). Then the Bellman problem associated with (30) (35) is D

N ° y 7 ' o

t W,V +mn, .‘

K e LMy 1y t:
N i e+ , 1 g€+ ol g€~ v i
- (36) +€ L {1 KLV N o9l 2 VIR Ty v,
i=l ¢ S

- | —
"‘: N bl i e- . y * 4 ':~: .."
- + el { -Ve [ K: (Vv ni - ‘yi)]} \' nj_ + ‘;
i=1 POeS
N M A . 2
.‘:; min { € L P { G(ilij) \lj Vﬁ +'8 (illj) uj 1 } F:::;
u. 3 i=1  §=1 i e

- J Ya ;:::::
N ’ .« 2 ~:'.'_:':

2 2 2 2 - v =0 DO

.. +¢€ L [ai‘i’i"'bi“i'*e hivi"'sini)] €y e
i =1 g
. e
. e
115 w4
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REMARKS :

1. Note that the minimization in (36) is well defined if the admissible

o range of the control forces is convex since the performance measure has

been assumed to be quadratic in the control variables s(i,ij)uj . ol
E

2. Since we have not included the effects of noise in the model, the state RO

LA M an

j: 3: equations are deterministic and the Bellman equation (36) is a first
‘I order system. To "regularize” the analysis, at least along the lines 5L

followed in conventional homogenization analysis, it is useful to

include the effects of noise in the model and exploit the resulting

. coercivity properites in the asymptotic analysis.
e 3, If we introduce the macroscopic spatial scale z = €x, the mesh [xi },
- i and the variables
s ® L[]
(BG7) v oz =] ©), ¥ &,z = Vi @, etc.

C then the sums ¢ I may be regarded as Riemann approximations to
e i

o integrals over the macroscopic spatial scale z. The asymptotic

" analysis of (36) with this interpretation defines the mathematical :-'.j.-;;
. SN
problem constituting simultaneous homogenization - optimization for O

this case.

" We shall return to this challenging problem in subsequent work. ;7;1

e e :...'..“.-.‘-';-\- \‘.'-‘Vu.‘ ‘L'-‘-‘-“.‘ 'i" ) L’:Jn o\ AR

" e T T A T T T T T Y



7. Homogenization and State Estimation in

Heterogeneous Structures

7.1 Problem Statement and Background

s aea T L3,
\

Signal processing problems arise in the control of large space

L

N structures in several ways. Our special interest here is in the
. treatment of & nonlinear filtering problem for a prototype abstract
S system vith a homogeneous infrastructure. We shall give @ detailed
S treatment of the filtering problem fqr the system
S . . .

(t
o dxe(t) = g[i—f:g)-]dt + o[xe )]dw(t)

€
o () dzf(e) = h[x—é-t-l]xs(t)dt + dv(t)

x$0) = £, 25(0) =0, 0<t<T,e> 0

where £ is an R'n = valued random variable, g, 0, and h are periodic on

the (unit) torus in R, and w(t) and v(t) are independent, standard

2 t vector-valued Wiener processes which are independent of £ . The
filtering problem for (1) is to estimate x (t), i.e., compute its
s conditional density, given Zi =g {ze(s), 0 < s <t}, the o-algebra of
i observations. We are interested in the behavior of this filtering
=
P problem in the limit as € * O.
.o In the model (1) the vector xe( t) may be regarded as the
. composite state of the overall system formed from the lexicographical
Z * The results in this section are joint work with A.  Bensoussan
N at INRIA in Versailles. This research was also supported in part by
- C the Department of Energy.
[
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.5 _311 listing of the states of each of the components of the system. The
B periodicity of g,0 , and h represents a regularity property of the
I array; the small parameter & represents a natural, non-dimensional
\ " "distance” or "coupling” varjable characterizing component
: \ interactions. In a subsequent paragraph we shall describe a prototype
" l. system in thia class.
:j:f - One would expect the system (1) to be well approximated as € + O
S by a similar system with g(x/e), 0 (x/€), and h(x/€) replaced by their
averages g, T, and h over the torus. This is the case, althovgh the '4
precise nature of the average is difficult to guess from a cursory %
l" inspection of (1). The filtering problem for the associated limiting -—-:
system is Jjust the Kalman-Bucy filtering problem which has a simple, .*1
closed form solution. By comstructing an asymptotic expansion for the
' l conditional density of xe( t) given Zet , we can obtain a family of
;: finite dimensional 1linear filters which (presumably) provide
;S _‘ increasingly accurate, e.g., 0(€), 0(6‘2),...,etc., approximations of
‘:.: c the conditional demsity of, xe(t). The technique used to derive the f"'-f':.'
result is "homogenization" of a linear stochastic partial differential
. equation for the (unnormalized) conditional denaity of x(t) given 2 .
S While the system (1) is obviously only an example of a larger —
: class of problems, we shall see that its analysis has all the \
essential difficulties of more general problems. Before starting the
A analysis it is useful +to illustrate how a problem like (1) might ::—j
:-::ﬁ arise. vj ;:;1
‘o =
wN 118 2
W N
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Consider the prototype system:

N
dxi(t) = a[xi(t), u(t)]dt + 1 T b[x

TR
a and b are smooth functions of their (vector-valued) arguments,
and W,y are standard (Vector) Wiener processes which are
endent for (i,J) # (k,%) and u(t) is a vector of control
bles. The functions a and b are the same for all the subsystems
the overall system with state x(t) = [xI(t),...,xn(t)]T has a
eneous structure. The coupling is random and normalized by 1/N
flect the assumption that each subsystem has O(1l) coupling to the
nder of the system (as opposed to O(N), O(1/N), etc.), no matter

arge the latter is.

Associated with (2), we define

N. .
S(t) = - I x,(t) = "the aggregate output"
1 N
a(t) = ¥ I xi(c) = '"the average output"
i=1

ge that in the process of controlling the system, we observe not

. but the aggregate S(t) through the measurement

dz(t) = h[S(t)]dt + dv(t)

h smooth and v(t) a standard Wiener process. Suppose further
the control u(t) is defined by u(t) = £f{S(t)] with S(t) an
mate of S(t) derived from z(s), s < t. We would like to analyze

'(4) in the limit as N*® ; and, more precisely, to show that this

119
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analysis involves the asymptotic analysis of systems scaled like (1).

; N

i . Defining Gxi(t) = xi(t) - o(t), we have ii_IIle(t) = 0., The
: - aggregate output S(t) satisfies

S N

Y as@) = I ak, (), ui)at

. <. i=1

' N N

| = (5) L+l 3 p&. @) I aw., ()

N, N ya J i=n 3

=Na (0 (t) ,u (t))dt

| N

+0 6|x, ) |9 at+b 6 @®) )-}; L aw 5 (&)
- _.' i'J=1
R 1 N N
b o)) L Sx. (®) I aw . ®)
. - x N N i =1 13
i f-ﬂ i=3 ~ b

+0 (|6x, ® [%)aw ()

where w(t) is a vector Wiener process defined from the components of

2
wij(t). Neglecting O(IG;i(t)l ) terms, we have

. , .
lz T dw, (t)

do(t). = a(o(t), u(t))dt + bla(t)) i
3 N 1,j=1 1

: (6) ‘ _ ;" _
l C +b (o(t))x p §x. () & dw..(t)
" X N i=1 i*N j=1 1j

To treat the last term, we use the formal argument in (Geman 1982)

I D S

™ vhich goes as follows: As N*% a "local chaos" condition prevails in
': : which each subsystem with state Gxi (t) Dbehaves "independently” of
R - N
g = every other subsystem, and, in effect, of the noises (f ldwij(t)/N),
5 . -
.v i=l,...,N. That is, a law of large numbers applies to the 1last term
! ::: as N+». Since R
: - N )
c L. I &x ()=0 ey
S i=1 A,
L L '
. DY
- . AR
. :d'_ h _.-_’1
R <oy
. 120 ROV,
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by the definition of o(t), the last term in (6) is zero. (In a more

general situation, this term would approach gzero as N + %) Notice that

B ' 1y

z w, . (t)

U .. s ed s

:: .. Nz i,j=1 +

‘.: :-.'

v o

:: = in the second term behaves like a standard Wiener process for each N.
I. e Thus, for large N we obtain the approximate model

(7 do(t) = a(o(t),u(t))dt + b(a(t))dwit)

- Now let ;(c,s) = a(0,S) and assume that S and S have the same Q‘_":I“
f- order behavior in N for N large. Defining €:= 1/N, we have two PR
: r descriptions of the aggregate behavior of (2) for N large .
. . . N

D do(t) = a(o(t), Co(t))de + b(a(t))dw(t)

. . (8&)

(Y dz(t) = h( 20 (8))dt + dv(t)

. - -

ds(t) = % a(esS(t),s(t))dt + % b(es(t))d"\é(t)

e

(8b) s

dz(t) = h(s(t))dt + dv(t) !
RO
;.-. So to analyze the aggregate behavior of the original system (2) as w o
Lo N+o , we can study (8a) or (8b) as € 0. If a, b, and h have a ]
:’,l - periodic or randomly recurrent dependence on their arguments, then the fZ:Z_:;Q;
S, e
L analysis of (8a,b) involves a homogenization problem. v
L —
':_; ::':':‘*
‘-.'-; ..:"..j
X4 ::.'_:.f
v Y
. L L

.
.
P
)
P

0
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The literature in mathematical physics and engineering contains

many examples of systems scaled 1like (8) which can be effectively

L LIARSTS
M - 'l R . ‘¢
. . v o

treated using homogenization theory (Keller 1977) (Larsem 1975, 1976).

R L

Homogenization methods have not been developed in control theory,

; other than the brief treatments in (Blankenship 1979) (Bensoussan
! = 1979).
i o 7.2 Preliminary Analysis
Let (2 ,F,P) be a probability space on which are defined two

L independent Wiener processes W(t) and z(t) vith values in RP and RY,
; ~ respectively. Let £ be a Gaussian random variable with values in R™
EE ?j which has mean x, and covariance P,. Suppose £ is independent of w(t)
E . and z(t). Let F%, ¢ > 0, be a family of c~algebras with F =P, such
! i: that %(t) and z(t) are adapted to ¥ and £ is PO - measureable. Let
i - Z =o{z(s), s<t}. Let Y be the unit torus in R" and

g(y) ¢ L R™; &™)

1§
L0

(9) a(y) e L (R“§ Rn) ; invertible

. .". ."‘..

h(y) e L (R"; Rd)

B EVE L

which are defined on the torus Y, and which are sufficiently smooth

1

there.

Let x°(t) be the solution of the Ito equation
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(10)

x5(0) = £ , 0<t<T

and note that x®(t) is independent of z(t). Comsider the processes

€
we(t) - - ft o-lgéiﬁxeds + QZ:)
0
(1) €
ve(e) = - s*t h(-xe—)xE ds + z(t)
0 .

and

t

€ €
us(t) = expl ft h(E—)xe°dz + [ o 1g CE—)xe°d3'
0 € 0 €

.

(12)
t x5 €2 t -1 x5 e;2
-k J |h x| ds - % IO lo” " g(Z)x | “ds
0 € €
For any finite T, one has

(13) Eu(M<ew

which is a consequence of the following condition (see A, Bensoussan,

J. L. Lions 1978)

(14) E exp Glxe (1:)|2 <c, VteloT

*

1
To check (14), consider the backward Cauchy problem (a =73 00 ,

and we shall use the summation convention from here on)
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1 (15) 1°%3
: 2 ;'.1_::::_.
. Culx,t) = exp (8]x]|°) s
': - :::::::i
5. Then R
: \" ,':.é:‘_.::
4 (16) E exp (s1x5(e)|%) = E u(g,0). ey
|« =
i:: ) Consider the function i
a7y S T exp(P(s) |x|2 + @) 1, B(s) 2 0 ]
. 1

P(t) = &, p(t) =0

L - We have

.

.: . - nd . S
Y 14 3°C - * L 2 2 2 A
- 3s t 215 eg‘) -g———xiaxj gl p + Plx|° + 2tr a P+4|ax|” P
b i (18) < zip + ®+4|la]|p?) +2|tr a|p) ;

< Zlo + d’+4| |a] lpz) +2n ||a]|P] - 1
E Choosing P and p so that

E: D (19) 5+ 4Ha||P2 =0, p+2nllaj]lp=0
= we have —

5 P(s) = §/[1-4|]a]]|6 t-s)]
-: :'.- (20 _:.3‘
aooL ’ exp (s) = 1/{1-4|[a|[6 t-s)17/2 .

By the maximum principle, £ (x,s) >u(x,s). Hence, S
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2 . 5 -4 t
r E exp 6|x€(t)| < E [ exp(6]e] /01 Hélln%])]
(1-4|lall sv)
(21) -
expS[(1-4|| a]| 6£)1 - 2P, ] 1ix |2
_ - 0 0
u /|(1-4|| al]st)1 - zapol
) Therefore, sufficient conditions for (14) to hold are s \_
- _?_-_".\
= 3
- 1- 4 |laf] 6T > o0 l“““‘_
- (22) ‘ L
(1 -4 llall s 1> 208, S
which hold if § is sufficiently small. These conditions are '-;;-.'“_3
independent of €. :
o Because of (15) we can consider the change of probability given E’***
by the Girsanov transformation ‘E;j:.-'.j'-
€
4 dp .
B (23) G - (D
FT
il Under the probability PE the processes wE(t) and v®(t) are independent !
€ £ e
2 standard Wiener processes. Since w (t) and v (t) are independent of E:
e -~ - A‘A _-.
Founder Pe; Eis independent of w (t) and vo(t). Further, since T
L € :’A.'
SR fue(t), Ft} is a martingale, & has the same distribution under P as
' under P.

P 7.3. The Filtering Problem e
- s
- In the space ( ,F,P5,F%) we can write
Z
125
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€
dx = g(%—) x“dt  + 0(%;)dwe

e .
(0) = ¢
(24) * @

. .
dz® = h(ie-) x%dt + avo(p)

. t
where v and v are standard F - Wiener processes which are mutually
0
independent. Moreover, & is a F - Gaussian random variable with mean

= x()and covariance matrix Py. The filtering problem associated with

(24) consists in computing

(25)  =S(e)(¥) = ES[w(xS(t)) | 2%

. -

for Y any Borel bounded test function on ﬁl. It is easy to check that

o Syw) = EEEenw] 2f
. E[uE(t)]| 2%
- (26) €
s - Etgtzgml
pe(t) (1)

where
t
(27) PS(OW) = E[p&EEu@®]| 27]
Our purpose here is to study the behavior of this quantity as €+ O.

In subsequent arguments it is useful to have the bound

&
f (28) .E v¥(m)? < .
3 .:\
Y To ensure this, we proceed as follows: For s > 1 we write
:;_ ue(T>2 =  exp{2 fg (hx® « dz + (o-lg)xe - aw
o .
(29) _
o T -1 -
U ~2s fo | (o lg)x®| %t} + exp {(25-1) 15 | (ko Lg)x® | 2}
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From this we have

s~-1

15 1o g)x% | 2aeny s

s(2s-1)

(30) EuE (D% ¢ (B exp (225

Note that s(2s-1)/(s~1) has a minimum on [1>) at some 5 > 1.

it suffices to check that

0(250-1)

so-l

(31) E exp{ Tl(h+c_lg)xe(t)|2}< m;ite[O;T].a

This is similar to (14) except that the parameter & is fixed.

so(Zso—l)

ek
so—l g

T || hto

(32) &

we require (22) which reads

30(230-1)

-1 y24
Tl I n+o™g |

[ ]
O

1> 4 ||a| 12
(33)

a- 60)1 > 26P0.

These conditions restrict the size of T, and the extent to which they

are necessary is not clear.

Thus,

Taking

T.4. A Duality Form and an Expression for the Conditional Density

By introducing a certain duality formula it is possible to obtain

an expression for the conditional density which is convenient for the

homogenization and convergence analysis.
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Let B be a deterministic function in L (0,T:8") and

(34) p(t) = exp {~f; 8 -dz - X% f; |B|2ds}

It is knowm that ¥T, the set of random variables, {P(T)], obtained by

varying 8 in Lw(O,T;Rd) is dense in L ( Q,ZT’,P;Rd).

Let Y be a smooth, bounded function on R and let B (t) be a

: a
smooth, bounded deterministic function on [O,T] with values in R . Ve —
Pl
introduce the deterministic function v€(x,t) which is the solution of e
o € 2 ¢ € 8
ORI v Xy 9 Vv x v
S w t 2.0 = +8,, D x, —
- at ij'e 3x18xj 1j .e § ax:l
T (35) € X A
s e <+ — =
R voohg %8y (0) = 0
s <€x,T) = ¥ (x) , T>t>0
= Because the c¢oefficients are smooth, (35) has a solution in __:
> o AN
) - et
. (!2']'(11n x [O,T]). Moreover, it satisfies the growth conditions e
R0
. , i
A . 2 oy
(36) Iv¢ &t ] < Cg &xp §|x| NN
S : . N
Iov¥ &, 01| <. g . exp 26x|?
o - /€ N
e
< =
> where §> O.can be chosen arbitrarily small. Note that the first i
- constant C . in (36) can be chosen independent of €, but not §.
e ::\ . .\_
L One way to verify (36) is to use a probabilistic formula for —
. i
AN ve(x,t). Consider the equation T
i
,-f . ‘\:'.':
=", C g_-“_
:; .:.. ".:s::
2 o
Y
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€ €
axf = g xfde + o()db f:
(37) | i
x5(t) = x *

on a probability space (not necessarily the original one) where b(s)

is a standard Wiener process. Then

€
(38) veax,e) = B WG exp ST hCD)x"sds)

Therefore,
‘ L.
Ivs(x,t)| < K f: E exp C|x€(s)| ds ;;':ﬂl‘:
(39)

< Ké f.: E exp tSlx‘;(s)|2 ds

where 6> O may be chosen arbitrarily small. A calculation similar to

(18) shows that

(40) £ exp s [x5(0)|2 < kg(0)exp P£(0) [x|?

where

.P;(t) = 4, t > s

. t,2 RO
Pg+ 4" llall + 2ligll g =0

O ¢t

(41) + 21>fs n |} all =0, kg(t) =1

Ovrﬂ lof‘re

w

. PR
. PO
? . »
TR .
el .
[N AP
et SR

N

Now

[
#'0'e.

4

o -
exp(-2 [|gl] (t-s) - 4 [lal6Ce-syy  Alzexel=2llgll Ce-9)])
2 |lgll (t-s)

o -"

-,
o
v
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(42) 2(lgll(t-s) exp(-2 lfgll (t-s)1 , 2llgll T exp (-21lgfl T]

1-exp{-2 ||g]} (t~s)] 1-exp(2 ||gl| T}

Since the function xexp(-x)/[1-exp(-x)] is decreasing on [0,%], one

has
i 26 || gl (t-9)
W) (eexpl-2 Jg]] (e-2y]y (2llallCemsdenp(=2 el (e .y (e-ey]
. : ' 1-exp[-2 ||g]| (t-s)] T

If we choose § > 0 so that

(44) 64 llalleT < 2||gll expl-2 flel{ T
' 1-exp[-2 ||gl| T)

L e I
I

N . DA

, RN [P
+ 0 .‘- ¢ .

then

i TeTs s
frte et
o

‘
v Y

. L .
> ‘o -x‘:"’-f
. AR
s B
. .
o ' s vt

i
TR

(45) [Pg(s)| < 28 llgll
2 [gll T expl-2 |lg] T1-4 lall 6T(1-exp{-2 {|g]| T1)

And from this the first estimate in (36) follows. iy

To prove the second estimate in (36), one may proceed by e

differentiating the expression (38). Namely,

-, -
‘Y‘ T
3
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€
€ ax, (T) T €
N_.p {at’ x: exp [ It h(%;)xsads]
Oxi axk . xi
6 . L€
(4e) + v&xS(D) (expl Iz h(l‘-;-)xes_ds])
h, 8xe
T ,1 ik ¢ %y
G, et by o () ds)
t € axl xk 58 xi
and from (37), .
9 € 1 3gk axi e axe
- e =3 = d
d(axi ) (e axl Xy xj + gkj axi ) ds
1 aok axe
(470 + 2 % &1 ab,
— h| i
axE
x:k (t) = Gki ’ S _>_ t 2_ 0

It follows from (47) that

i TN S 1ie,ni2
(48) E_(|3xi ()| )< clL+E I, [x€(r)|© dr]
Hence, < cQ +_|xl2).
ax (s)
49) g (|a—i—|2 )< ¢ @+ |xD

and from this one can readily deduce the second estimate in (36).
€
Using the function v (x,t), it is possible to obtain a convenient

expression for p(t)(¥).

Proposition 1. Under assumptions (9) we have for any ¢, the equality
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Vool
N o
t -
N (50) EP*(MWe(M] = E[vE(£,0)] 7
~ ’
. € ove
s vhere {n v (x.O)no(x)dx
(51) w (x) = =t exp [-% (x-x )P (x-x.)].
& 0 [(Zu)“detpol"‘ ) o Fo o
Proof. From (27) we have .
S s2) EREMMBMI = EWHGEMLEMAM]
o = E(vCGEM.EMBMI:
- But
& NG = (2 o DY
Y (53) MR at 343 o 9%
'::: - : ave n
.:: .: + E‘I oij dwj
. and
C € & -1 ‘xeA £ Y
' d(up) = ou[h(ﬁ—)xe'dz‘*c g( ) x - dv]
(54) .
+ puB+dz + puB-h( ﬁe—)xedt
e
o Using this and (35), we have
. £
5 Ve (), ()] = HE (a0 (0" EDDF 6 (1),0)
- € ,:’
= (55) | £ VS aE@,0 ol g( @) - @ ;
. € :
L + VRS, EE)xE () + s(e)rdz). o
T
omY
ey
el

’
PO
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R

o
-
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T Because of the estimates (36) onme can take the expectation of the
A

N stochastic integrals obtained by integrating (55). Integrating and
. . taking the expectation gives

LR EvEE, 0) = EVCGEM,D wS(Dp(n)]

; which is the desired result.

QED.

Remark. Note that (50) is well defined if ¥ is Borel bounded and

B e I?(O,T;Rd). In this case the function v is not (':2'1(R_n x [0,7]);

but this is not essential for the right hand side of (50) to be well

A
0
[y
»

Clld

T

defined. Thus, by regularization, it follows that (50) also holds

Jre
* . "-,' l!

L4 4a
whenY is Borel bounded and B € L (0,T;R ).

.l .'

w
W

0
=Sl
A% .1
2 r_ a_a
)
[N

T.5. Homogenization

. ;:jf Our objective is to derive a homogenization representation of the

i C conditional distribution pu(t)(‘l’) as €+ 0. We shall begin by
L:—? < considering the homogenization of (35), which is a relatively
, _j'.'_ classical problem. Formally, the method is as follows: We consider
an expansion of the form -»u
= 1
(56) vE(x,t) = vo(x,t) + evl(x, -;5, t) + szvé(x, %, t) + 3e(x,t) .- :

Y Introducing y = x/¢ and using the expression
2 2 , 1 2
o —_— o =

(57) ax, ax, € 2y,
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oo we obtain .
- 2 v
- v v v e 3 Vg 0
9 1 2 _2 N 4 oa, () e X T
18 58 ¢t 3 t ¢ toue 137 ox x, 1377773 Ay
2 2 2
v AV
" + v,h, .(y)x.B 1 3 vy 1 1
R 0437731 4 Za, (y) —— +2a, () 7= + €a,.() 53
s : e 213777 By oy 1377 By ox, 13" Bx ax
l\-
l L (58) avl avl ,
T +8ij(Y)xj<eaTi+3§:) + e vihij(}')xjﬁi
2
. 2
~ 3V 2 2 —_—
2 + € a,. (Y
: + 2ea.. (M i ax, 9x
S +ag, ) ayiay;j _ i3 ayiayj- . 3 9% 40Xy
S v v
2 "2 2 2 € ve
R —= —=y+ h x. 8 -A" v =0
S g 0%y (e =, T )" "2 13 0%384
o~
_I: where we have set
:-’:- € azv v
. (59) AV = T3y ) a—xi—a;- " Byy (}')xj -a—x—i- - vy, (Y)!,cjﬁi
o with y = x/ . We choose o
"./ i : j.'l
C (60) v, (x,y,t) = v, (x,t) :i
W -;~ ;
and L
™ h‘: 2 v .:. :
' - 3v0 9 vo + g (y)x v :.: 4
st 3y 62 B 1j j 9x ALY |
e
(61 ) 2 .:_-.':1
s 3 vz :‘; '4}
N — = N
. + thj_j ()')xj B.i + 35 ) 33’133’3 S
To deal with the latter, we introduce m(y) the unique solution of ::'._':::
e
ey
[ F
’_:-'.:J
L34 e
'n ..1
SN
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(62) 3y;3y4

m periodicon Y, m >0, me c?, me(y)dy =1 (cf. Bensoussan,
Lions, and Papanicolaou 1978, p. 530). Then the solvability
condition (Fredholm Alternative) for (61) is

2

avo aivo v _
— a PR A P — h =
e T %4y wpex, ¢ Biy Yyax *vohyy*sBy = 0
(63) 3 |

vo(x,'l‘) = P(x), T>t>0
where we have set
(64) 3g5= [ a0 mtey
and similarly defined g, . and h, ..

1] 1]
If we, in fact, choose
(65) vl(x.t) = 0
ve .

then v (x,t) is the solution of

33’5 € e 32v v

-—+A v = e(Ra,, —m— + g,.x, T™)

3t : ij ayioxj 1373 3y,

(66)
) .
ov Vv v
2 2 2 2 h, .x.8
NS TR TE T TSR T A S e

g
v x,T) =0 , T>t>0
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To estimate vt' » we proceed as follows: First, we derive an
explicit formula for vo(x,t) vhich is similar to (38). Consider the

Gaussian proceas

8 .8. A EEEEmE ¥ 7",
[y N - 1

(67) d¢ = gt dt + odb E(t) = x

- _ _ 1 .
| = vhere @ = (2a)2 . Using this

' T _ .
(68) volx,t) = E{y (E*’t('r)) exp[ [ hE  (s):8(s)}

T and we can easily check that
P : 2
s P |v0(x,t)[ < K exp(s{x|™)
A ' .
v.'.', . (69)
Do 2
:: - |Dv0(x.t)| < K exp(8]x]%)
l ‘ for some K s and any§8 > O. An additional calculation shows that
p
s T
a2 IV ' 2
> (70) I 0 <. K, exp(8]x|9).
" axiaxj - 8 .
I C
These estimates mean that
:, v
' ~ 0 2
- u (70) l Y. I < l(6 exp(&[x[ ). -‘:"-‘:,'1
.;_::3::;‘
Lo s
m = From (61)-(63) we can assert that el g
P —
K ..‘_1
4 L = v
!4_ (1) 0 is not the average of 0. This is a slight abuse of notation.
- 136
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2
3 Vo v
vy(x,y,t) = xij(Y) 3;;3;; + _"1j(Y)xj o 5
(12) : o
, L. ..
for some smooth, bounded functions¥..,N,., and §,.0on Y. Since the P
ij° 'ij ij ol
higher order derivatives of Vv, also satisfy the bounds (69) - (1), we ;::-:l'-;
R
can deduce from (66) and (72) that ;—ﬂ-«
e S
(13) - -:‘(— + KV - ef5VE (x,T) = 0 e
where

(74) Ife(x,t)l < K exp(&lxlz)

R, P
: o g 0y
L d e e e
LS . N N

Again considering (37), we can write
\ S xe €
(75) V€ (x,t) = ¢€E { ff £%(x%(s),8) (expl 15 b E)x®-gdr])ds}

And, by using arguments similar to those which led to the first
estimate in (36), we obtain

(16) - v (68 < ek, exp(8]x|?%)

where 6> 0 can be chosen arbitrarily small. Combining this estimate

with the expression (72) for v,, we have proved the following:

Proposition 2. Under the assumption (1) we have the estimate

7) |vE(x,t) - vox,t)| < € L exp(6|x|2)
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where 8% O can be chosen arbitrarily small.

Y TV L VYT .. T §

ll By adapting this procedure we can provide a similar analysis of

) the homogenization properties of the conditional distribution (27) in
'ii the nonlinear filtering problem. This is the main result of this
) section.

First, consider the "limiting filtering problem" defined as

follows: Let
dx = g xdt + odw
(78) dz = h xdt + dv
=z x(0) = ¢, 2z(0) - 0, 0O<teT
and let
(19) P°M® = @] 27
where
(s0) vo(t) = exp { f; hx + dz - % f; | Exlzds}.

in which z is a standard Wiener process. ((78) follows from a
= Girsanov transformation as used in (24)). In fact, we have the

well-known formula

()exp(=(y=x(m) BTl (1) k()]
2m)™ 2 (det P(T))*

n

(81) %1y (v) = exp(-o(T)) + 1
R

in which

‘ -
. ,v.
0 '.--
Y 138
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) (82) o(®) = % f5 [Rxl®ds - sfEx - de o

u’ and x(t) is the state of the Kalman filter S

e

.t
.

s
LU

."‘r.'-
&

dx = gx dt + Ph' (dz - hx dt)

.
chl
S |
“ ¥

g
~~
o
o
]
o]
o
P
s

-y
'l. [' TS

P + PhRP -G 0. - (s +Pg = 0

As in Proposition 1, we can show that

o (M W (M] = Elvy (&, 0]
2 (84) |
; r" = !{n Vo(xyo)ﬂo(x)dx. ____

2 Using this, we can state the following:

i . Theorem. Under the assumptions (9) and (33) we have

(85) P (T)(y) —— 2 (T) (¥) o

e~ 0 : -

weakly in I°( Q,2ZT,P) for every bounded, uniformly continuous .

Proof. PFirst ncte that we can assume, without 1loss of generality, -~
that y is smooth and bounded. Indeed, letEles Lz( Q,ZT,P), then Cne

using (28)
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(8) < Jlvll;= IETILZ /e m?.
g < C”M"L” lETlLZ'

Since Y is uniformly continuous and bounded, it can be approximated in

WY
~ the sup norm by a sequence of smooth, bounded functions. This and the
~ uniform estimate (86) means that it suffices to estabish (85) for
F smooth y 's.
N Note also that the estimate (86) proves that pt(T)(y) is bounded
-~ in 7 (0,27,P). Therefore, it is sufficient to prove that
o 0
| ¢ (87)  gpS(mWIe(m] —— Elp (D W) o(D)]

.e=+0

for any B, since the corresponding set of p(T)'s is dense in

. '1%(q,zT,P), as we have already noted.

But from formulas (50) and (84), the assertion (87) is equivalent

to

.._ In ve(x,O) ﬂo(x)dx —_— fn vo'(x,O)wo(x)dx
R €E~>0 R

Since this is immediate from Proposition 2, the Theorem is proved.

Remark. The Theorem implies the convergence of the conditional

j:', probability itself in a very weak sense. Indeed we have for any
g€ 1%(e,2%,p)
ES xS (M WE, = BEEMNEMEy = E P (M WEy
C £ MW, = B (D WE,

IR I I
e
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o]
T vhere T (T)(¥) = Egizlikl
p (T)(D)

x
4

denotes the limit conditional probability, and Eo refers to the

R

-.'\

AR probability on Q for which z satisfies (78). Therefore, we can assert
= that

€ € 0.0
E ¥ (T) (VJ)ET + E T (T) (W)&.r vw,vsT

TV T

It would be nice to prbve stronger convergence results, but it must be woee

= kept in mind +that the processes (1) themselves converge just in law

DAL A
L. c .
..1

and not in a stronger sense (cf. Bensoussan, Lions, and Papanicolaou

1978, p. 405).
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8. Open Problems and Further Work

3 Il The two main issues which we plan to develop in subsequent phases
i o of this research program are the integration of the modeling and
'E i; control methodologies along the lines initiated in sections 5, 6 and
< - 7, and the development of numerical software to facilitate the
- application of the integrated methodology to complex structures. The
o ) specific issues which we intend to address in Phase II of this
: research program are:
E 1. Homogenizaiion and asymptotic analysis of control (including state
:" estimation) for large lattice type structures.
g
2. Wiener-Hopf - spectral factorization methods for the control of
complex space systems with hybrid (lumped and distributed)
. structure.
;I T 3. Development of stabilizing control strategies for nonlinéar

distributed models, including nonlinear beam and plate models.

i 4. Synthesis of a design methodology for hybrid nonlinear structures,
including the nonlinear differential geometriq.methods which have

been used for finite dimensional control problems and the (linear)

I methods which we have developed for the treatment of distributed

linear models.
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f. Asymptotic Analysis and Homogenization of Control Problems },i

ASAL> |

U RS
3

for Lattice Type Structures.

o I
T

In Phase I of this program the use of homogenization in

b
EE SE connection with control system designs was demonstrated in the
Fi c analysis of two abstract control and filtering problems. This -
i: }i analysis established the mathematical feasibility of the technique. Ef&
o Previously, homogenization had been used only for model redﬁction, and '322
it had not been applied in a control theoretic setting. Since the ;;2
%; basic optimization techniques, 1like the Bellman equation, are )
- inherently nonlinear, it was not clear how the methodology could be
é% used. The feasibility of the homogenization methodolog& has now been F;;
o demonstrated in the context of abstract control problems. ;ig
N We have also demonstrated use of the methodology in  the EE;S
.‘ construction of simplified models for certain kinds dynamical ;;;
Cf phenomena propagating on lattice structures. We have treated ﬁeat iﬁ;
conduction type problems, by exploiting the connection between such :Eiz

.__n
!

problems and an associated probabilistic structure, and simple one
dimensional lattice structures using purely analytical (PDE) methods

for model simplification. The asymptotic analysis method involves a

:: study of the convergence of the resolvents of certain operators using o=
the theory of "correctors" introduced for this class of problems by E;E

Ei Bensoussan, Lions, and Papanicolaou (1978). The method handles the i:;
.o

" transition from the "discrete"” operators characterizing lattice type ;fi

A
LI

.
. .
Y %
P

structures to the PDE operators characterizing the continuum

DA
..
ol

a

]

L wte e
o . .

X
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.
p ‘I‘A
'.'-’.

approximations of the structures. It also  produces the natural

.

continuum model in the course of the asymptotic analysis; <that is, it A
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tﬁ is not necessary to postulate the model a priori. For example,

[T RN

homogenization of the one dimensional lattice structure in section 5

. .l produced the Timoshenko beam model rather than the Euler beam model
) <. which one might have expected from the symmetry of the orginal
PR N

1] o~

b formulation.

In the second phase of this program we shall develop the
NS methodology to treat the combined problem of modeling and control of
lattice type structures; that is, we shall develop the homogenization e

- optimization methodology described in section 6 to treat realistic

S models of the dynamical control of large lattice and plate structures. ;t}ﬁ
' r.: 1 .. ..
= 2. Wiener-Hopf - spectral factorization methods for the control b e
-“ ..,.'..."
; of complex space systems with hybrid (lumped and distributed) A
4 L structure. e
T .' RS
SO Thus far we have applied our control theory only to purely SR
S distributed models of a very simple character. While it is clear that -
I: the methods can be used for the design and analyis of control systems s -
. for structures with both distributed and lumped components, it would fllk
> ;: be useful to treat a problem including both kinds of elements with an ig ‘
f . overall 1linear model. The NASA challenge proﬁlem is of this type and e
e we shall consider it, adapting our frequency domain methods as %;ff
.; . required to carry out the design. Since this problem is being i
) » considered by several researchers using a variety of methods, Fol
L comparison of results and capabilities will be possible. While there %ﬁtﬁ
v are no conceptual problems in this extension of our methods, we do S;:ﬁ
. ) . _:.:\.:
: L expect to encounter challenging numerical problems.
- "7"_7:
2 S
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3. Development of stabilizing control strategies for nonlinear

distributed models, including nonlinear beam and plate models.

Many of the applications of large space structures require
maneuvers which cannot be faithfully described by linear models. For
example, large attitude excursions of telescope and antenna structures
require equations for the evolution of the Euler angles through the
course of thenﬁneuver; We plan to extend our methods to treat
certain aspects of.Atﬁis class of problems. AIt will be necessary to
use differential geometric methods to describe the global dynamies of
the system undergoing large angle ﬁaﬁeuveis. Recent work by Baillieul
(1983), E1 Baraka and Krishnaprasad (1954). among otheré has led to a
theory for the attitude dynamics for articulated structures. Elements
of this theory in combination with the methods for the control of
distributed systems which have been used in Phase I of this project
should be a useful starting point for the development of - a
comprehensive theory for large scale motions of complex, distributed

siructures.

Specific issues to be addressed include the use of stabilization

techniques for semilinear distributed systems. These are systems in

- 75 which the controls enter the dynamics by multipling the state. Common

g examples include the dynamics of a beam in which the applied load can
f% be manipulated. When the load is used as a feedback control, the

L system is nonlinear, and the theory of nonlinear semigroups is the

. L

N . most convenient setting for the analysis. In a series of papers Ball

\

~ EE and Slemrod have derived conditions for the stabilization of such

¥ systems. In particular, they show that stabilization of the Euler

’ e

4
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- beam by semilinear feedback is a delicate problem, and that the most

natural conditions tend to lead to a weak form of stability.

In the second phase of this program we plan to combine this

R VT . T T e 05 2 MR T
- |

?¥' theory with the corresponding theory for the stabilization of finite

dimensional nonlinear systems undergoing large attitude motions.

4. Synthesis of the Nonlinear and Distributed Design Methods

Resolution of the problems imn 1.-3., will lead to a design
procedure for (a class of) control systems for large space structures.

Work will be necessary to unify the various methods into a software

- '

r system for computer-aided-design. We shall use software systems for

o symbolic manipulation (either MACSYMA or SMP) to implement the complex

analysis involved in the initial reduction of the modeling and control

'l problem (for example, by carrying out an asymptotic analysis in the

| context of the control system design). This will permit us to base

the selection of numerical routines for the implementation of the

. models and control laws on simplified structural models. This will in

. ‘ turn reduce the number and diversity of costly computer runs which
j; must be made with conventional design tools.

.
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APPEI'DIX A

Experinental Results For The Euler Becam

The plots appear in groups. A first page of each group contains parameters
of the run. For example the firat group is preceeded by a page with the
following parameters. CONTROL: .2,.5.,.8. The number designate locations
of point actuators. Similar remarks apply for the OBSERV, where this
OBSERV designates the points on the beam whose displacement is penalized in
the coat criterion. FREQUENCY RANGE is the range of frequency over which
we evaluate the transfer function matrix, the spectral factors, and the
resolvent. RELATIVE WEIGHT OF X VS U is the weight of the norm of
observation vector, assuming the weight of the control vector to be one.
The name of the file is a working variable. WHAT MODE: here we list all
the spacial modes that are used to displace the beam (one at a time), and
the next 1line provides the amplitude of this disturbance. FEEDBACK GAIN:
is =1 for the optimal gain and it is O for the open loop. The meaning of
the plot titles is as follows: "Beam at x, yth mode,” means that the beam
is initially displaced by the y-th spacial mode, and the deflection of the
beam is observed as a function of time at point x. On the control plot we
indicate the position of the point control and the time evolution of the

control at that point.
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